Category: Categories, Posts & Discussions

This BLOG “sustain-earth” is an In-clusive, Inter-active, Inter-disciplinary and Inter-sectorial platform to implement “Sustainability and Applied Sustainability” in all sectors, on all levels and anywhere. It is, also, a market-oriented platform for transforming “Sustainability and Applied Sustainability”, from individual, narrow and fragmented understanding to a holistic and applied prospective. The search of man for secured living confronted with fundamental life processes on earth and resulted in major threats endangering the land-water resources and the very survival of life.

The “BLOG” is constructed in two parts: Part (1) is a “theoretical and knowledge-based one”; and Part (2) is a “practical and applied one”. Both parts are inter-related and supplement each other where Part (1) “Categories, posts & Discussions” explains the theoretical background upon which Part (2) “Pages & Note-board” is based. Both parts are spanning over all national sectors (private, public and governmental) and involve, also, inter-governmental organizations and relevant international bodies. Furthermore, the structure and built-in dynamics of the “BLOG” seek the integration of individuals, groups, companies, organizations, communities, societies, ….. etc. on both horizontal and vertical levels. The motivation, goal and vision are to bring about coherent sustainable systems through linking together all building blocks. Sustainability, i.e. concepts and knowledge therein, is being explained in Part (1) while Part (2) is devoted to more Applied and practical issues for production, communication and services.

Through its Editorial Board and Guest Bloggers and contact points, the BLOG is acting as “Open Access” instrument for coupling education and research with market and society needs, and thereby supporting professionals, including young ones, for creating, improving and up-dating “Career Development Plans” to suit an ever dynamic and changeable labor market. It is an instrument for enhancing public awareness, promoting capacity building as well as for supporting the development and management of human resources and infra-structures for quality services in public and private sectors.

Sahara Desert Once Green Landscape – Evolution, Water Resources, Human History and Life.

The Sahara or the Great Desert, in Arabic Al Sahra al-Kubra “الصحراءالكبرى” is one of major deserts on planet Earth, i.e. landscape that receives very little precipitation, rain or snow, less than 250 mm per year. It is as big as the USA and its sand can burry the whole world 20 cm deep. Desert land does not necessarily mean sand and sand dunes; many deserts are rocky surfaces as well. One third of the earth’s surface is desert lands that exist in polar, subtropical, cold winter and cool coastal regions. Deserts have no surface streams because of rapid evaporation, transpiration (by plants and subsequent release to atmosphere) or/and infiltration into the ground. Deserts have unique fauna and flora that are adapted to the harsh climate and environment conditions, i.e. intense sun, limited precipitation, severe temperature ranges, dry wind and low humidity. 

The Sahara Desert is located in subtropical North Africa and it is the hottest place on the planet. The mystery of what created and changed the Sahara desert has revealed a turbulent past. The African tectonic plate collided with Europe and what was a huge sea turned gradually to land, with the Mediterranean as remaining sea, many million of years ago. Finding whales in the desert is not a climatological story but rather a geological evolution. Indeed, the Sahara has the highest fossil remains in the world, almost all of them are marine animals such as those found in Wadi Al Hitan, Egypt “Whales Valley”. The reconstruction of the evolution and the history of the Sahara were made possible through the remaining fossils of sea creatures in the desert itself along with geological information from deep sediment cores. Sediment cores are excellent archives for obtaining historical, environmental and climatological information. Whale bones in the desert showed that 40 millions years ago the Sahara was a sea bed, deep ocean sediment cores containing wind blown sand revealed that sea water dried up three millions years ago. Freshwater shells buried in sand showed that 90 000 years ago the “wobbles” of the earth’s axis (http://www.ncdc.noaa.gov/paleo/milankovitch.html) created huge freshwater lakes and rivers and turned the Sahara green every 20 000 years. Ostrich eggshell, used by prehistoric settlements for manufacturing beads, indicated that just 7000 years ago the Sahara enjoyed its final burst of life before returning into desert.

The story of the Sahara showed that it wasn’t always a barren wasteland. Life was not static, it could shift, change, evolve and it can bloom again into green terrain, i.e. in the distant future. Ground penetrating radars showed that there are huge freshwater lakes “groundwater” under the surface of the Sahara Desert. Such fossil water can be million of years old. This gives hopes for turning the desert to green land by being reclaimed for agriculture and farming. Nubian Aquifer (Egypt, Libya, Sudan and Chad) is an example of such fossil water and is already in use. Fossil water is non-renewable resource, can only be used once and is sufficient for a short period of time depending on consumption, probably can last something like 100 years. After being consumed the desert has to wait for another 15000 years before once more earth “wobbles” turns it green again.

Note. The earth wobbles in space makes it tilt around its axis on a cycle of 41 000 years with introduction of changes in the seasons. More tilt means more severe seasons, i.e. warmer summers and colder winters; less tilt means less severe seasons – colder summers and milder winters.

This new chapter of history that tells the story of the past turbulent landscape of the Sahara gives interesting information on how the earth and desert was made. 

Peak Population by 2055-2070 Resulting from Decreasing Global Fertility

New research data is pointing towards population peak around 2055, about 8.7 billions, followed by decline to 8 billions by 2100 (http://www.cnbc.com/id/101018722).  However, according to data given below peak population could occur by the year 2070 when the population might be 9.5 or 10 billion. Previous data by the United Nations “UN” foresee further rise until 2100 to reach 10.9 billions with no peak population.

The carrying capacity of planet earth is a very much-discussed topic with many different scenarios and predictions. However, increasing amount of data have shifted towards more clear trends a converging world population towards a peak around 2050 due to the declining of global fertility. All developed, less developed and least developed regions show declining fertilities that already started around 1960. The period of continuous increase in global population because of increasing average human life span and decline in human mortality will soon be over.

http://www.camelclimatechange.org/view/article/51cbee0b7896bb431f695b54/?topic=51cbfc8ef702fc2ba812d477

World Bank Energy Policies – Is Ecological Water Quality taken in Consideration?

Decisions of what type of energy resources we should invest in have long-term and large-scale impacts on the ecological quality of water and soil fertility. One issue, which is not very well searched, is the impacts of hydropower on the ecological quality of water that gives rise soil fertility. Both the ecological quality of water and soil fertility are very important for biodiversity and food production.

Hydropower is by definition a major interference in the natural hydrological cycle of surface water where erosion at up-stream high-land regions is essential process for promoting soil fertility in river catchments and river deltas in down-stream and low-land regions. In previous cases, e.g. the Aswan high-dam, the natural fertility at down-stream and delta areas was mitigated by heavy use of artificial fertilization. Artificial fertilization will not last for long-term as it is a non-renewable resource in addition to the long-term and large-scale environmental risks associated with it in terms of use and production.

In most of the energy debates the focus, so far, has been on reduction of carbon dioxide “green-house gas” so as to minimize the effect of global warming and its associated impacts. That is of course necessary but at the same time we have to consider other major impacts on the water cycle because of “Water-Energy Nexus” and in this context we have to take such aspects while we are about to implement policies for the use of “oil sand” or tar sand”. “Oil sand” or tar sand” is another case where in addition to risks for increased carbon dioxide emissions, there are clear negative impacts on water and ecological qualities.

Though the negative impacts of hydropower on ecological water quality and soil fertility may not be of the same dimensions as the benefits from hydropower, such impacts have to be taken in consideration for optimization of overall long-term and large-scale uses of “Water-Energy” resources. What we need to do is to have appropriate “Environment Assessment Analyses” and “Sustainable Actions” in place, so as to be prepared to deal with the growing degradation of water and ecological qualities.

http://www.dailytimes.com.pk/business/21-Jun-2014/world-bank-prefers-financing-hydel-projects

Water Challenges and Management – World’s 36 Most Water-Stressed Countries

World Resources Institute “WRI” has recently evaluated, mapped, and scored water risks in 100 river basins of 180 nations around the world. Assessment is carried out for the first time on country-level with consideration to area and population. In this research 36 countries face “extremely high” levels of baseline water stress. This means that more than 80 percent of the water available to agricultural, domestic, and industrial users is withdrawn annually — leaving businesses, farms, and communities vulnerable to scarcity. Baseline water stress, used as an indicator, measures how much water is withdrawn every year from rivers, streams, and shallow aquifers for domestic, agricultural, and industrial uses.

Analyzing water risk at the country level is important as such information is highly relevant for country’s economy, environment, and communities. Though water data is usually collected and reported at local geographic scales, water-related decisions and investments are often made at much larger scales, thus requiring country-level information.

Extremely high water stress can be successfully managed such as in the case of Singapore. The country is densely populated with no freshwater lakes or aquifers, and its demand for water far exceeds its naturally occurring supply. Singapore invests heavily in technology, international agreements, and responsible management, allowing it to meet its freshwater needs. Advanced rainwater capture systems contribute 20 percent of Singapore’s water supply, 40 percent is imported from Malaysia, grey water reuse adds 30 percent, and desalination produces the remaining 10 percent of the supply to meet the country’s total demand.

An important issue in this respect which is still lacking in many parts of the world is spatio-temporal water quality maps where pollution sources, both point and diffuse, are being identified. This is of importance for better conservation and protection of water resources as well as for building up solid monitoring programs for assessing the status of surface-/ground-water and associated eco-systems. Such programs give access to base-line data of natural levels of pollutants, provide bases for early-warning systems and facilitate rehabilitation actions

http://www.wri.org/blog/2013/12/world’s-36-most-water-stressed-countries

The Arctic Dilemma – Nomadic Life or Boarding Schools?

Nomads, 30-40 millions in 1995 around the world, roaming around and moving from one place to another for pasture or hunter-gatherer is a fast disappearing life-style. Reindeer have been herded for centuries in polar and sub-polar regions, horses remain national symbols in Mongolia and camels are still the perfect choice in the Sahara. After the industrial revolution “mechanization” and with increasing dependence on fossil-fuel, urbanization became “magnets” causing considerable drainage of people to technology and modern life, even without basic knowledge about the requirements and threats of the new life.

“There’s no place like home”, but with the advance of science and technology the definition of home becomes much different in particular in the era of globalization and the Internet. The choice between staying home and being drained to new life-styles may create conflicts between generations and communities or at least cause separation and fragmentation in families.

The weather in the polar mountains can turn in just a few minutes and at the artic circle conditions can be extreme. The ways of life, learning and even childbirth are often intense. People living in the tundra are accustomed to a nomadic life. Tents are their homes, food is basic, and the deer is king. They don’t watch TV or don’t use internet. Children do go to boarding schools, but not all parents are in favor of them. A well-known writer and teacher created her own alternative education for the children of the tundra as she believes that a good education should be based on the essential skills needed to survive in the artic far north. She explains that our constitution clearly says our indigenous children must have free education but it doesn’t say free life care. In schools everything is done for the children and later on they face life without to know how to do ordinary things, as they don’t have that knowledge when they leave schools. Children become gradually separated from their roots, loose ties with other generations and when graduated from school they have to decide between going to higher education or back to the tundra. What to choose when they already separated from home and are not able to establish roots at home?

Find out more about life and education in the tundra.

Siberian Hermits Who Didn’t Know That World War II Took Place!

This is a lesson to be learned about how previous generations survived the extreme conditions on earth, i.e. somewhat similar to the environment of the ice ages.

Agafia Lykov born 1944 in the Siberian wilderness, she has a very unique and rare story. Today she is still remaining alone, isolated in one of the most extreme and inhospitable environment on our planet. She is surviving steadfast in her seclusion in the Sayan Mountains, 160 miles away from any other sign of civilization. Agafia’s family that escaped persecution and moved to Siberia in 1936 became famous in 1978 when Agafia was discovered by a team of Russian geologists. This event marked the end of their isolation and Agafia’s family became famous in Russia as the family of Siberian hermits who didn’t know that World War II took place!

See and follow this interesting story how a single person turn severe environments to a sustainable living home.

Siberia – Life in Coldest Inhabited Area on Earth at Down to Minus 71 Degrees Celsius!

To understand the importance of temperature for the sustainability of life on earth we have to examine how our environment looks like in different climate zones, i.e. at different average temperatures around the year, with different ranges and extremes of temperature. These are central in climate issues and the ongoing debate on the impacts of global warming.

How cold is cold and how hot is hot is, for several reasons, important for us to know. This is not only vital for our lives and living environments but also how the technology we are dependent on in our houses, cities and villages operates. Temperature has several impacts on biological, chemical and physical reactions/behavior of everything around us. Human bodies, for example, have an optimum universal temperature of 37 degrees Celsius for healthy functioning and few degrees change in this temperature may indicate threats and even endanger lives. For other species temperature is also important, elephants wouldn’t survive in Siberia as much as beers wouldn’t exist in “Death Depression”. However, reindeers are perfectly suited for Siberia and camels can survive the harsh conditions of Sahara, deserts and even the heat of “Death Depression”. Temperature has several impacts on water, in hot arid zones you would never find fresh surface-water as is the case of “Death Depression”, and at the very low temperatures of Siberia you wouldn’t find water running on the surface either, i.e. only snow or ice. In both cases, you would have either desert or “permafrost”, i.e. permanently frozen soils, with little on no possibility for agriculture, food, controlled animal husbandry and production.

What concerns technology, there are no need for refrigerators in Siberia and no need for warming houses by fire/electricity in Kenya or Tanzania. Construction of ventilation, water piping and sanitation facilities as well as transport, communication and health-care infrastructures can be much different in very hot and very cold areas. Costs and operation of public and private services and infrastructures would be much different at extreme temperature and weather conditions. We have to take in consideration that different extreme temperatures mean different extreme weather conditions as well. In some cases, functioning and maintenance would be costly, technically complex or even unrealistic. Also, for the agriculture, i.e. food, feed, fuel and fiber production, consumption and conservation of natural resources.

We can feel heat/cold through the “sense” of our skin that has “sensors” to tell about the how hot/cold objectives around us are. But, this is in narrow limits of temperature range “hot/cold” and with cost of damaging the skin and/or the body. Thermometers or heat/cold “sensors” are much better instruments to measure the temperature, i.e. the property that describes how hot or cold things are and in terms of absolute units. Among international units to measure the temperature is degrees Celsius, however other systems of units exist, e.g. degrees Fahrenheit in the US. Anders Celsius, Swedish scientist, came with the elegant “Celsius” scale for measuring the temperature by relating it to the properties of water at sea level, i.e. where the atmospheric pressure is defined to be normal. The zero degrees Celsius is where water gets frozen and 100 degrees Celsius is when water boils.

Additional examples of life conditions at extreme temperatures and weather conditions will be given and described on other occasions.

http://www.policymic.com/articles/80809/12-incredible-photos-of-the-coldest-city-in-the-world

Life and Secrets of the Ethiopia’s “Death” Depression – The Hottest Place on Earth!

Global warming is something happening in the atmosphere but the earth itself is still cooling and the journey of evolution is slowly developing with new lands and oceans to be created. A paradox forcing the earth system to move in different directions, i.e. towards warmer atmosphere as forced by man and cooler earth’s interior due to natural processes. It is the very reality of our planet “Earth” where humans are struggling to survive in the middle of a paradox that they are part of it, but how long would life on earth continue to exist?

 

The Danakil Depression and the Rift Valley in general have secrets to tell. This so-called “Death” Depression is the hottest place on earth with an average annual temperature of 34.4 degrees centigrade “Celsius” day and night! There is already evidence of increasing volcanic activity that is happening even at a faster rate than ever known. The Danakil Depression is a junc-on of three tectonic plates with an earth crust thin enough for many processes to take place, e.g. tectonic and volcanic activities, development of new deposits, bubbling of gases, colorful acids and crystals as well as creation of salts. These are no ordinary volcano but they rather indicate active hydrothermal system near the earth’s surface with coupled interactions with the sea.

In the Death Depression where machines failed, humans succeeded and Afar camels are the perfect desert machines, as they don’t waste anything. Goats are, also, fit for these areas by being mountains and desert animals that can provide humans by milk and meat. However, the depression is unsafe and has harsh environment with fire wind, chemical minefields and no water. The unique Afar people work under such extreme desert-heat with salt mining and they are situated far away with no access to any modern services. The depression has world’s largest salt deposits by being lower than sea level, 120-170 meters below sea level,

The Hottest Place on Earth Episode 1 Part 1 https://www.youtube.com/watch?v=ebM7G4hyFFw

The Hottest Place on Earth Episode 1Part 2 https://www.youtube.com/watch?v=kA5ml9aTbos

The Hottest Place on Earth Episode 1 Part 3 https://www.youtube.com/watch?v=-59M2uFMA80

The Hottest Place on Earth Episode 1 Part 4 https://www.youtube.com/watch?v=hlaZtoOXKhM

The Hottest Place on Earth Episode 1 Part 5 https://www.youtube.com/watch?v=JlYVS4hscCY

Dubai – Youthful promise by SynergY marks World Environment and World Ocean Days with tree plantation

World Oceans Day is celebrated around the world every June 8th, following the World Environment Day on 5th June. SynergY youth group in Dubai made a promise for the ocean by planting 50 trees at Green Mountain MRF supported by Dubai Municipality at the landfill area in Dubai on 7th June’2014. Nearly 1200 trees have been planted at various landfill and waste management sites in a short span in Dubai and 50 more added today. The Members also took interesting selfies near the Mamzar Beach to seal their pledge. These pictures showed the deep commitment this group has to raise awareness and get the community engaged in to support environment. The theme for World Oceans Day for 2014 is, “Together we have the power to protect the ocean!” and that of the World Environment Day was “Raise your voices and not the sea level”.

Simran Vedvyas, the founder of SynergY explained how each and every act of ours can help reduce the effects of global warming which is the biggest threat to humankind as- ‘We throw away over 1/3 of all food that is produced, wasting precious land and water resources that have gone into its production. Food waste in landfills is one of the biggest contributors of the harmful gases that cause global warming. Warmer temperatures are melting glaciers causing sea levels to rise, threatening small islands and low lying cities around the world. We pose everyone to take pledge and ‘reduce food waste’ because this is the only way to make a difference in lives of our future generation’

Mr. Sadin Ismail Al Falasi, Head of Treatment Systems Unit from Waste Management Department, Dubai Municipality and other officials were present at the event to support and encourage the children in their endeavors. He believes that what this group is doing for the community is remarkable and also complimented Simran for her recent achievements and on receiving the John Muir Award for Youth Environmental Conservation Award and the International 2014 Eco Hero Award by Action for Nature USA, recently.

“We ask everyone to help reduce the “FOODprint” by managing the meals smartly, storing food, using leftovers, buying imperfect vegetables and encouraging the supermarkets and restaurants to cut their food waste”, is the message disseminated by the members of this group.

The group celebrated the World Environment Day by visiting the exhibition “Your Planet Needs You” by Dubai Municipality at Children City that encourages a scientific look into the future of Dubai should we choose to take care of or ignore our environment. The visit to this exhibition gave a glimpse into Dubai 2050 as to how citizen of Dubai will survive global changes such as resource availability and the climate. The exhibition is an eye-opener into a scientifically designed future of our world, and is recommended for children, teens and families. The activities were CSR supported by Al Futtaim Carillion and Barakat Juices.

SynergY youth group has worked on grass-root level projects to raise awareness and fight against food waste which campaigns for reducing landfills. Making use of the Information and Communication Technology this youth group has innovatively used tools like videos, blogs, e-mails and shared the work on the social media to ‘reduce the food waste’. SynergY has raised awareness and environmental education through events, lectures, presentations about reducing waste that is filling the landfills and also planting trees and greening the landfill areas.

www.synergyouth.weebly.com
www.facebook.com/CosmoFoundationYouth

Author name: Simran Vedvyas
Speciality and expertise: Environment and Waste Management
Sector/Affiliation: SynergY youth
Adress: P. O.Box 30876 Dubai UAE
E-mail: simran.vedvyas@gmail.com
Mobile: 00971506526228
Type of contribution: Climate Action

Phosphorus Fertilization: Too Much of a Good Thing Can be Detrimental.

The economic benefits of phosphorus fertilization on crop production are well documented, also its importance for food security but is phosphorus fertilization free from risks and threats? or is too much of a good thing can be detrimental? If so, what are the threats and risks that are associated with the excesstive use of phosphorus.

Soil degradation is a worldwide problem especially with the inceasing damming of rivers around the world due to the need for hydro-electric power. Natural erosion that brings fertile soil to the low land and deltas are being halted as eroded materials are forced to accumulate behind artifically engineered barriers, i.e. the dams. As a consequence of damming of rivers huge land-areas loose their natural fartility and artificial fertilization is required for mitigation. This is, indeed, on short-term perspective both economically and environmentally expensive, and out-come are disastrous what regards the long-term and large-scale consequences.

Excessive use of phosphorus in agriculture for food production has negative impacts on water quality of aquatic systems (rivers, lakes and marine coasts) and groundwater due to increasing levels of P in aquatic systems that cause “eutrophication”, decreasing levels of oxygen and gradual decrease in fish productivity. Degradation of water quality of groundwater is associated with increasing agricultural waste/run-off. In all cases, there are associated costs for mitigation, rehabilitation and purification of water.   http://pubs.ext.vt.edu/424/424-029/424-029_pdf.pdf

Another critical issue in securing our future food is indeed missing from the global policy agenda: we are running out of cheap and readily available phosphate fertilizer on which world agriculture is totally dependent. Supply of phosphorus from mined phosphate rock could ‘peak’ as soon as 2033, as phosphate rock is a non-renewable resource becoming increasingly scarce and expensive. http://www.soilassociation.org/LinkClick.aspx?fileticket=eeGPQJORrkw%3D

“Sustain-earth.com” will represent an alternative and sustainable approaches for fertilization with several benefits over artificial phosphorus fertilization that can very well replace it. This alternative is WE-saving, i.e. can save both energy and water, it is environment friendly.

 

 

 

Africa’s Sanitation and Hygiene – Mobile Phones Rather Than Toilets.

The fact that there are more “mobile phones” in Africa, and elsewhere in the developing countries around the world, than “toilets” provokes many thoughts. It is worth reasoning why such situation has developed very rapidly and still influencing and forcing many people to do so. What is interesting in this respect is neither the “mobile phones”, they are rather symbols of “technology and science”, nor the “toilets”, they are also symbols of “sanitation and hygiene”.

We have now to examine the connection between mobile phones and toilets. For many people in the developing countries it is more important and essential to have a mobile phone that having a toilet and this choice is not random. It is in fact a human paradox and we need to analyse its origin, i.e. the contradictory behaviour of humans as understood by some of us on the one side and at the same time the irrational but rather natural behaviour also of humans as understood by others on the other side. In this context, we have to take up very complex everyday dilemmas for humans, i.e. the so-called “Nexuses”. “Nexus technology-science” – technology is a consequence of science and both are very much related and dependent on each other like no fish can survive without water and water with poor quality cannot promote life for fish and produce healthy fish. “Nexus science-education” – science in itself a human product based on education, without education there would be no science and the quality of education is essential for survival of good science. One of the essential features of science is that it is neutral which is not the case what regards education and technology. Here comes the modern role of politicians, policy-makers, investors and the market at large on human behaviour, traditions and cultures and thereby the perception of education and technology on the one side and science the other. In the past few decades many of us realised the importance of political “transparency and accountability” for achieving sustainable socio-economic developments. However, no successful political system in the world operates well unless “transparency and accountability” exists in all society sectors and on all levels. This includes “transparency and accountability” within and between all society sectors including all stakeholders, communities and the very building blocks of the society, i.e. families and individuals. “Transparency and accountability” is the core essence of any healthy, functionable and sustainable democracy.

If humans make collective unsustainable decisions then the mentioned nexuses are neither properly understood nor taken in consideration to run the society. At some stage the whole chain in the society contributed in shaping the society in the wrong direction, it is a slow gradual process rather easy to develop but unfortunately very difficult to revert. It is an organised manifestation of the whole society against “transparency and accountability” rules, i.e. organized “misjudgement” which indeed don’t emanate out of thin air. Collective unsustainable decisions and organized misjudgement emerges from ignoring the role of education to foster the citizens and populations to create their own knowledge capital for achieving welfare which indeed a precondition for useful science and technology. Mobile phones and toilets are both products of science and technology but the problems in the developing countries are essentially related to the blind import of knowledge “science” and random imitation of “technology” rather than understanding through education the meaning of science and technology for human welfare.

LOGO of "sustain-earth.com" has three colours. Main colour of "earth" is green a product of  "blue" for  clean water and "yellow" for clean energy.

“sustain-earth.com” main colour of “earth” is green a product of “blue” for clean water and “yellow” for clean energy. Visit, join and contribute in http://sustain-earth.com

Julian Huxley – The Human Race Will Be the Cancer of the Planet.

Julian Huxley (1887-1975) a zoologist, educator and writer who played a leading role in the creation of UNESCO “United Nations Educational, Scientific and Cultural Organization”. For twenty years Julian Huxley was the Vice-President of the International Commission for the History of the Scientific and Cultural Development of Mankind.

Rivers, lakes and deltas, and their catchments are major freshwater resources for the world populations. However, the increasing impacts of waste, pollution and sanitation during the past century, in particular after WW-II, caused major damage and degradation in many river and lake eco-systems around the world. We give here few examples of the most polluted rivers around the world.

http://www.wunderground.com/news/worlds-most-polluted-rivers-20130627?pageno=9

Invitation – A NEW Logo For Sustain-Earth.

http://sustain-earth.com is a platform and a BLOG for integrating and marketing sustainability in education and research, and popularization of sustainability in science and technology. It supports “Open Access”. It has built-in functions and instruments for coupling education, research and technology with society, market and population needs on national and international levels. It, also, acts for promoting “Business-to-Business” and creating “Career-Development-Plans” for professionals and graduates in the emerging applications of sustainability and socio-economic developments. http://sustain-earth.com is an instruments and vehicle for developing and implementing applied sustainability in all sectors and on all levels.

LOGO of "sustain-earth.com" has three colours. Main colour of "earth" is green a product of  "blue" for  clean water and "yellow" for clean energy.

LOGO of “sustain-earth.com” has three colors. Main color of “earth” is a dynamic green-product of “blue” for clean water and “yellow” for clean energy. A green main arrow representing the functioning and metabolism of “sustain-earth” through fueling life by constant clean water “blue” supported by clean energy “yellow”.

To learn more and get introduction on “http://sustain-earth.com” please visit “ABOUT”. We welcome any questions and inquiries through “CONTACT”. You are, also, most welcome with innovative posts at “CONTRIBUTE”.

Lake Victoria – The Paradox of Water Use and Abuse.

Lake Victoria, the second largest fresh-water body in the world and a water resource shared by three East African countries, is an enormous water resource facing collective mis-management on several levels. Lake Victoria is under considerable pollution pressures causing softly and steadily killing of its bio-diversity in addition to a real risk for drying-up from “global warming”.

An example is Jinja town, population of 300 000 people, that is rising after so many years of decline to claim the glory it lost so many years ago. However, the time is running out not only for the town and its population but for the whole water body of Lake Victoria. There is an accelerating pollution, abuse of environment and water resources due to limited access to waste and solid-waste treatment from industry, agriculture, household, rubbish damp and sanitation. Many industrial (more than 70 factories in Jinja only with high pollution incidents) , agricultural, household activities are releasing huge amounts of waste and pollutants to Lake Victoria.

The fishing, transport of people and goods to the main land and other public services suffer from random management, fragmented policies, and lack of collective protection and management actions. Fish population is declining as consequence of the damage the food-web dynamics of the lake and the natural functioning and metabolism in the lake because of heavy loads of nutrients, pollutants and siltation. Over-fishing of  the so-called “fish-of-choice” a small fish lower down in the food-web that is destroying the natural balance of the food-web and causing the collapse of the overall fish-population dynamics.

Poor infra-structures and water drainage systems from forest, agriculture, household and sanitation along with erosion and re-suspension of sediments due to man-made and animal activities are causing excess delivery of nutrients, accelerating “eutrophication” and decreasing levels of oxygen and thereby death and increasing prices of fish. The degradation of water quality will, also, force gradual and rapid increase in the proces of clean water.

A New Era of Global Water Disasters and Water Refugees

Waters around the world are facing a new era of threats with accelerating disasters, pressures and constrains due to global warming, waste and pollution. Water scarcity and degradation in water and ecological qualities are creating crises for wild habitats and human civilizations. Many seas, rivers, lakes, and underground water reserves around the world are either lost or losing their aquatic resources with serious impacts on the livelihoods of hundreds of millions people, animals, farming, lives, electricity, and threatening further environment and climate changes.

Chinas Salween River, Europe’s Danube, South America’s la Plata, North American Rio Grande, India’s Ganges, Pakistan’s Indus, Africa’s Nile and Lake Victoria, Australia’s Murray Darling, Southeast Asia’s Mekong-Lancang, China’s Yangtze due to dams, over-extraction, overfishing and climate change. In addition to the threats of global warming and human activities; waste and pollution from industry, agriculture and household further worsen the quality of waters.

Follow the stories of water resources around the globe.

Climate and Environment – Is the Nile Basin Heading to a Total Collapse?

The Nile Basin Countries are facing two major long-term and large-scale threats that can lead to the total collapse of the water resources in the whole Nile system, i.e. from the very sources at its origin “up-stream” to its final fate at the deltas “down-stream”.  These major threats are related to climate change “global warming” and environmental degradation because of waste and pollution (from energy, industry, agriculture and household). To deal with these major threats, i.e. mitigation and solutions, the Nile Basin countries need to develop and implement sustainable management strategies/policies. In this context, achieving sustainable socio-economic developments in the Nile Basin region, which indeed applies also to the other parts of the MENA region, requires coupling public awareness, education, science and technology programs to society, population and markets needs.

Warning About Fish – Don’t Eat Fish Unless You Know The Origin?

Unfortunately, there are growing global fear about the quality of seafood and fish that are either wild in polluted waters or farmed in toxic waters. Such unfit fish for eating, i.e. with high levels of toxic pollutants, is available in the market as control instruments are either ineffective or non-existing.

For different reasons the water quality where fish is grown is facing considerable pollution threats because of acute water shortages, water supplies contaminated by sewage, industrial waste and agricultural runoff that includes pesticides. These pollution threats are accelerating because of increasing pressures on water resources and unavailable/limited regulations for fish farming in many regions around the world. Farmers, for example, have coped with the toxic waters by mixing illegal veterinary drugs and pesticides into fish feed, which helps keep their stocks alive yet leaves poisonous and carcinogenic residues in seafood. Many people started to work with fish faring without enough knowledge and in areas with little or no control. This introduces enormous health threats to consumers where environmental degradation has become a food safety problem. Indeed, the long-term risks of consuming contaminated seafood could lead to higher rates of cancer and liver disease and other afflictions. “Sustain-earth.com” will follow these issues and give further information and details on these issues.

http://www.nytimes.com/2007/12/15/world/asia/15fish.html?pagewanted=all&_r=1&

Renewables – Wind Turbines are environment and water friendly

The so-called renewable energy sources/resources differ considerably and in many aspects from non-renewable ones. In “susutain-earth.com” we examined one type of electricity generation TPP “Thermal Power Plants” through using fossil-fuel “coal”. The “life-cycle”, in this case the transformation of fossil energy to electricity, was given including the production of waste and pollution as unwanted bi-products with environmentally damaging effects. We demonstrated, also, the so-called WE-nexus, i.e. how the production of (energy) electricity is dependent on water. Here we illustrate the “life-cycle” for production of electricity from wind.

The construction, installation and operation of wind turbines are simple in relations to the more complicated “TPP units”. With appropriate storage solutions, i.e. to compensate for variable power production “weather conditions”, they provide cost-effective and environment friendly solutions, as is the case for solar planels, i.e. with “zero” pollution and no need for water in operation.

Thermal Power Plants – WE-Nexus and Environmental Impacts of Coal Power Plants

Many of us have seen many power stations and industries are built near water bodies, this is because they need the water in their production or need to get rid of their waste, or both. Here we can see how Water and Energy are connected to each other, both with positive or negative impacts. Here is an example of positive and negative impacts given only in a qualitative and descriptive way.

Understanding “Water-Energy Nexus” is a key issue in Applied Sustainability in terms of how transformation of energy, i.e. from fossil form to electricity, not only needs and consumes water but also creates environmental pollution. The emitted atmospheric pollutants and rest products, in this case, e.g. carbon dioxide (100%), sulphur oxide 8%, nitrogen oxide (data on extraction yield is not given), heavy metals such as Pb, Cu, Zn, Cd, ….. (information and data on removal are not given) and water vapor. These pollutants and rest products have negative impacts on the environment in terms of degradation in air, water and ecological qualities, e.g. acid rain that cause acidification of aquatic systems with negative impacts on lakes, rivers and marine coasts.

The life cycle of thermal power plants starts with coal mining, coal transport, coal pulverizing and coal burning (combustion of coal to produce heat and produce water vapor to run the turbines and generate electricity). As mineral coal has different levels of impurities and pollutants, such S, N, heavy metals and probably small amounts of radio-active elements, all these substances will turn to bi-production. The bi-products are not likely to be completely removed and some amounts will be released to the environment as is evident in many areas in China by the naked eye. The negative impacts of such pollution on air and water quality are very well documents in literature, however some countries have improved their production technologies and have strict protection rules what regards air, water and ecological qualities. Nevertheless, emissions of “green house” gases, causing “global warming”, is still a major global problem. The scape of water vapor from fossil-fuel based-power and industrial plants around the world introduces disturbances in natural water cycles and adds new uncertainties in modeling the water cycles. Water vapor is also a “green house”. At the same time, the emerging negative threats from “WE-nexus” on achieving socio-economic developments need further improvements and actions what regards WE-management policies.

MENA and Nile Basin – WE-Saving Strategies Are Needed To Meet Future Challenges

The accelerating consumption of WE-resources “Water and Energy Resources” in the MENA region has huge negative long-term and large-scale impacts on achieving sustainable socio-economic developments in the whole region. The same threats are emerging in the Nile Basin region. Effective large-scale and long-term solutions are urgently required for developing and implementing WE-saving technologies in all society sectors and on all levels.

http://www.saudigazette.com.sa/index.cfm?method=home.regcon&contentid=20130418161903