The Water-Climate Nexus: Greening Deserts and Cities

Greening the deserts and cities are crucial for people’s wellbeing, alleviation of poverty and mitigation of climate change. Large-scale and long-term greening of the landscape whether in deserts or urban areas is a major challenge in many parts of the world. Though the ongoing threats of climate change there are successful examples of scaling-up and scaling-out the greening of deserts and cities.

This might seem as a paradox, difficult and even impossible mission, how is it possible to green the landscape under an ongoing crisis of climate where the average temperature of the earth’s atmosphere is projected to increase more than 1.5 degrees Celsius in the near future. But it isn’t at all a paradox as such a scenario depends on the first hand on how to get the water to remain in the top surface layer of soils at the earth’s surface, i.e. to let the water to residence there for relatively longer time being bound in soil matrices and vegetations. It is a matter of getting the right balance between saving the water in soils and loosing it to the atmosphere by evaporation or the underlying soils by percolation. This is indeed the core essence of both mitigating the climate change and at the same time greening the landscape of the earth’s surface. However, this will still be possible and feasible as long as we don’t surpass the tipping points of the global water cycle that allows this equilibrium to take place on large and long-time scales. This is imperative and mandatory to mitigate the climate change in many parts of the world.

China has realized the importance to promote its ecological progress as being of vital importance to the people’s wellbeing and China’s future. Nearly 30 years ago, or more, the Kubuqi Desert in Inner Mongolia, i.e. the seventh largest desert in China, was a barren land with no water, electricity, or future. However, Elion Resources Group (ELION) has successfully afforested an area of over 6,000 square kilometers by means of technological innovation, leading to a 95 percent decrease in sand-dust weather and an increase by six times in precipitation in Kubuqi. This has also been a major step for alleviation of poverty in the region. During the process of ecosystem restoration it has been an industrial development simultaneously driven by desertification control and promotion of several government support to integrate diverse corporate commercial investments with combined market-oriented participation by farmers and herdsmen.

Sustainable developments is indeed a development with an emphasis on environmental and ecological improvements which resulted in transforming the vast areas of the Kubuqi Desert from being a “Sea of Death” to a “Green Economy Oasis” as we have it today. It is also a major shift towards a circular economy driven by sustainable and resilient circular agriculture technology for better environment and ecology with financial benefits and wellbeing to local communities and residents. The right strategies, persistent and resilient efforts allowed to successfully turn the vast expanse of dry and loose sand into wealth and prosper landscape for millions of people along with greener and healthy living environments.

After more than three decades of efforts and innovation, the process of desertification has been reversed and water returned back to land after centuries of ‘mismanaged’ animal grazing that had denuded the area of almost all vegetation and water where the local population existed in isolated poverty. Such large-scale and long-term transformation of barren sand-dunes into green oases can offer lasting solutions to desertification worldwide. Indeed, China is one of the most severely afflicted deserts in the world. By the end of the 20th century, China’s deserts were expanding at a combined annual rate of 10,400 sq km but now they are shrinking at a rate of 2,424 sq km per year. This is while the deserts and desertified landscape worldwide continue to expand by 70,000 sq km annually.

“Deserts should not be seen as a problem, but as an opportunity for change. Taking care of the desert and making it greener can lift people out of poverty, provide prosperity and help to develop areas,” says Wang Yujie, deputy director of the China National Sand Control and Desert Industry Society (; The transformation of the Kubuqi desert to green land, changed also the life of the farmers and herdsmen from being plagued by violent sandstorms causing serious shortages of water and electricity, also resulting in poor basic living infrastructure including the lack of roads for transportation. As in many other deserts in the world the local people could hardly survive in sandy-dunes with miserable and poor living conditions where animals and cattle are forced to die from starvation and from being so thirsty in the cruel nature of the desert.

Singapore has also successfully turned their cities to green-living conditions though the complete lack of fresh-water resources as is the case in desert lands. The entire land of Singapore is transformed to sustainable, resilient and smart living environments relying primarily and totally on renewables from solar-energy and the continuous recycling of renewable water resources. China and Singapore, and to lesser extent the GCC countries, demonstrated that modern technology can turn uninhabitable landscapes to friendly and lovely living environments (

Editorial Board – Dr. Mahmoud Abdel-Hafiez (AGYA)

It is our pleasure to welcome Dr. Mahmoud Abdel-Hafiez in the Editorial Board of We would also like to congratulate him for being elected the German co-president of AGYA academy in sciences and humanities for the academic year 2021-2022. Short summary about AGYA Academy with text is extracted from the home-page of AGYA ( is also given below.

Dr. Mahmoud Abdel-Hafiez is currently associate Professor (Docent in physics) at Department of Physics and Astronomy, Uppsala University, Sweden. He has specific interest in studying quantum materials with thermodynamic, magnetic, and transport experiments in high pressure and low temperatures. His collaboration with others allow him to use neutron, x-ray scattering and muSR spectroscopy to study the magnetic ground state. The aim is to grow high quality single crystals of the materials used in his studies. His current interests include SC, CDW, and the behavior of electrons in 2D and 1D-materials.

In 2018-2020 he acted as Research Associate, Physics Department, Harvard University, Cambridge, Massachusetts, USA. During 2015-2018 he was Assistant Professor, Institute for Physics, Goethe-University Frankfurt, Germany. In 2014-2016 he acted as Group Leader at Center for High Pressure Science and Technology (HPSTAR) Beijing/Shanghai, China. While in 2013-2014 he was
Postdoctoral Researcher at Université de Liège, Belgium (Nanostructured Materials Group) directly after he finished his PhD in 2012 at TU Dresden / IFW Dresden, Germany (Thermodynamics and Magnetism). He obtained his B.Sc. and M.Sc. in Solid State Physics, Fayoum University, Egypt. He has numerous publications in pioneer high-quality journals together with researchers from many other universities as given in his C.V..

Short Summary on AGYA Academy. The Arab-German Young Academy ‘AGYA’ has 23 countries with one mission in Sciences and Humanities for bringing together excellent Arab and German scholars to address common challenges and develop solutions through sustainable research cooperation. The member countries of the AGYA (based In Germany (Berlin-Brandenburg Academy of Sciences and Humanities ‘BBAW’) and In Academy of Scientific Research and Technology ‘ASRT’ in Egypt) are Algeria, Bahrain, Comoros, Djubouti, Egypt, Iraq, Jordan, Kuwait, Lebanon, Libya, Mauritania, Morocco, Oman, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen.

AGYA promotes early-career scholars (3–10 years after PhD) from its member countries in the Arab world and Germany. The academy implements joint interdisciplinary research projects and initiatives at the interface of science and society with a focus on education, innovation, and science policy. It has various Work Groups in education, heritage, water, energy, environment, sustainable developments, health and society as well as innovation

The AGYA is unique organisation, it is the first bilateral young academy worldwide founded in 2013 and carries out research cooperation on equal terms. The academy’s members and its alumni/alumnae are involved in very interesting and broad activities for building a community of trust with interregional competence networking to inspire a new kind of research practice. Working collaboratively beyond borders, members share a socio-scientific vision of equal partnership and research excellence to realize cutting-edge research projects. AGYA has a well-structured cooperation framework with diverse infrastructure that enables strong links between researchers from many disciplines in the context of Arab-German scientific collaboration. Strengthening trans-disciplinary Arab-German human interactions allows fostering innovation in research across the natural sciences, technical sciences, life sciences, social sciences, humanities, and arts. It is by far an inclusive programme for bringing science in its broad definition nearer to a diverse socio-cultural environment to engage young graduates and researchers in central sustainability issues.

The approaches of AGYA are based on fresh perspectives, the members and alumni/alumnae share an interdisciplinary approach to scientific enquiry, with the intention of seeking broad inter-disciplinary solutions to future societal challenges. By being motivated to conduct cross-borders and interdisciplinary research, they are socially committed as academic international leaders. In this context, AGYA offers an unprecedented and excellent opportunity that members from all kinds of disciplines, subjects, and research fields meet and develop their interdisciplinary projects. The complexity of today’s challenges and the ongoing transformation to sustainable and resilient societies necessitates input from different disciplines and cultures to deal with existing wicked and yet common existential threats.

Cross-cultural Arab-German landscape can provide researchers with the necessary stimulation to uncover how much Arab and German societies actually have in common. Scarcity of resources, like clean water, clean air, renewable energy and sustainable food are common future challenges that needs international collaboration. Arab and German societies share common experiences that emanated from modern needs for integrating global migrants into higher education and scientific discourse. In this context AGYA provides fertile landscape to cultivate cultural heritage using shared ancient cultural technologies such as storytelling. AGYA in this respect facilitates the emergence of fresh and pioneering Arab-German perspectives for strengthening new forms of North-South-South cooperation.

For ensuring inclusiveness through principles of self-governance AGYA members are independent and free to determine their own research topics and agenda. They do this by connecting and forming partnerships with fellow members. All members meet to discuss the academy’s affairs and agenda in bi-annual general assemblies, Steering Committee are bring elected annually by the members. Through its activities the AGYA participants develop outstanding intercultural understanding and build abilities in self-governance, self-organization, and self-expression in multi-cultural environment. Unlike other academic organizations, AGYA’s alumni/alumna act as ambassadors of this culture thus inspiring others across the Arab-German academic world.

Collaborative research across borders creates spaces of interaction between researchers and with policymakers and other stakeholders. Research cooperation cultivates long-lasting multilayered relationships for building an academic civil society with more potential for shared understanding to productively clarify and mediate outside of the political arena with evidence-based policy advice. This makes the AGYA academy a true cross-cultural think tank that benefit German and Arab societies.

The AGYA is a vehicle for empowering and capacity building to enable its members to obtain, improve, and retain the skills, knowledge and resources to advance in research and dissemination of science to the society. In this context, AGYA has outreach activities to attract young scholars at the pre-Ph.D. and Ph.D. levels with consideration inclusiveness in areas of research, academic life including gender balance and advance of women in the academia. Among other activities, AGYA conduct international exhibitions (e.g. ‘From Cinderella to Sindbad: German and Arab Timeless Tales in Abu Dhabi), annual conferences, symposia and hands-on training for Career-Development-Plans. These take place in all its member countries and across all disciplines including technical sciences, social sciences, natural sciences, life sciences, humanities and art.

For more information on AGYA, also why and how to join the Academy (e.g. eligibility, requirements and application) please visit

Credit: https://AGYA.INFO

Bhutan: First To Be Carbon Neutral But How and Why?

Kingdom of Bhutan – is the only single country in the world that isn’t only carbon-neutral but carbon-negative. It has replaced the generally and globally accepted concept of Gross Domestic Product ‘GDP’ by its own home-made concept Growth National Happiness ‘GNH’.

Bhutan ( has moved quickly from being one of the most closed states on the planet to an open, more or less, ‘modern’ country. It has its own local traditions that are intertwined with their social and economic spheres as well as religion. It has proved to be on the correct path towards full sustainability as it has to large extent eradicated corruption. It has tightly and gradually linked their traditions and religion to achieve environmental safety, economic growth, social developments including maintaining its own cultural heritage.

There are several reasons that allowed Bhutan to move fast towards reaching the status of being, the first country on the planet, Carbon Negative nation. It has very small population, one million, living on limited piece of land with well preserved nature ( and biodiversity. It has implemented rules to regulate the protection of its land and to use eco-tourism to support its public services specially education and health. Modern technology arrived to Bhutan very late, by the end of the 20th century, yet it is moving slowly in the process of urbanisation with focus on own self-sufficiency of food and respect for nature. This is though being located between two major economies, i.e. China and India, with much growing technological changes. It has banned export of its natural resources and it is using hydroelectric power as main source of electricity. It has already banned the fossil-fuel to be used by its industries. Its economy is based on agriculture yet with environmentally friendly processes. It is also moving towards the use of electric vehicles. In 2030 the country will start to absorb much more (several times) carbon than it emits and it will also be free from the air-pollution.

Yes We Can – The African Great Green Wall.

Young people in Africa, with support of the African Union, and in cooperation with youth from around the world (including university students and practitioners that participated on their own initiatives) are determined to build prosperous and rewarding future. Also, to take actions to stop the climate crisis, to promote and implement the United Nations Sustainable Development Goals. While the challenges are huge and demanding, they are enormously motivated to work together. With simple but yet very effective approaches, starting with small plants, they aim to stop desertification that have been going on for millennium in the Great Sahara Desert of North Africa ( This part of the world is one of the most arid, hot and uninhibited regions of the world. It has the world’s highest officially recorded average daily high temperature of 47 °C or 116.6 °F in a remote desert town of Algeria called Bou Bernous at an elevation of 378 metres (1,240 ft) above sea level, and only Death Valley of California rivals it.

A report from the UN reveals that drylands, including vast areas of desert, cover 41.3% of Earth’s total land area. What if large amounts of this land could be converted into fertile ground capable of producing crops? Also using their hidden natural vast resources sustainably. This is a particularly important question for many counties in the world which is now receiving serious and huge attention because of the increasing population, declining resources and also the diverse existential threats facing Earth. As we know the Arabian Peninsula including Kuwait 🇰🇼, Oman 🇴🇲 , Qatar 🇶🇦 , Saudi Arabia 🇸🇦 , the United Arab Emirates 🇦🇪 (UAE) has turned their desert to living and prosperous landscape. So, this can be also done for some of the great desert land of the Sahara that is separating Africa in two very distinctive and separated regions. China🇨🇳also turned, and is still turning, large areas of desert to green landscape ( Technology isn’t only about urbanization and smart cities. Indeed, much can be done in rural, desert, mountain and coastal marine areas as modern technologies have unlimited possible solutions. Also, the Information Communication Technology ‘ICT’ and Internet of Things ‘IoT’ can facilitate and solve much of the previous difficulties. We need to think Out-of-the-Box and tune modern technology to meet needs other than cities and heavily urbanized areas. Science and Technology need to expand their horizons to wider global applications.

For ten years young Africans have been going to the desert to plant trees in their holidays. The communities of the Sahel-Sahara States are turning many acres of the desert to new green landscape just in several days. As is called ‘The Great Green Wall’ is an African-led movement ( with ambition to grow an 8,000km natural wonder of the world across the entire width of Africa. A decade in and roughly 15% underway, the initiative is already bringing life back to Africa’s degraded landscapes at an unprecedented scale, providing food security, jobs and a reason to stay for the millions who live along its path. This will also help coping with the climate-crisis. Indeed, North Africa has enormous resources for producing renewable solar energies, and other solar-based technologies yet to be developed, as the world is turning its back to fossil energy resources for coping with the climate crisis and other associated threats.

Indeed, the movement of The Great Green Wall ‘GGW’ has diverse benefits not only for the most poorest Africans but also for Africa, the MENA region and the rest of the world in general ( It will:

(1) Improving millions of lives; (2) A global symbol for humanity overcoming biggest threat of rapidly degrading environment; (3) A vital contribution to the UN Sustainable Development Goals ‘SDGs’; (4) Growing a new world wonder across the entire width of Africa; (5) Growing fertile land, one of humanity’s most precious natural assets; (6) Growing a wall of hope against abject poverty; (7) Growing food security, for the millions that go hungry every day; (8) Growing health and wellbeing for the world’s poorest communities; (9) Growing improved water security, so women and girls don’t have to spend hours everyday fetching water; (10) Growing gender equity, empowering women with new opportunities; (12) Growing sustainable energy, powering communities towards a brighter future; (13) Growing green jobs, giving real incomes to families across the Sahel; (14) Growing economic opportunities to boost small business and commercial enterprise; (15) Growing a reason to stay to help break the cycle of migration; (16) Growing sustainable consumption pattern, to protect the natural capital of the Sahel; (17) Growing resilience to climate change in a region where temperatures are rising faster than anywhere else on Earth; (18) Growing a symbol of peace in countries where conflict continues to displace communities; (19) Growing strategic partnerships to accelerate rural development across Africa; (20) Growing a symbol of interfaith harmony across Africa. These are enormous incentives for the world to support the ongoing work of the GGW, it is now we can do it as we are running out of time.

Throughout history, humans have continuously moved and expanded all over planet Earth and turned vast unhibited areas to new prosperous landscape. Yet much of the natural resources on planet earth are kept unused or abused for some reason or another. What we don’t use properly we loose definitely and this was the case of the Great Desert of North Africa, the Sahara. It is now time to invest in Africa as Africa in the past supported Europe 🇪🇺and the USA 🇺🇸 , i.e. in the era of colonialism and slavery. With the birth of the UN after WWII, Paris agreement and the ratification of the UN-SDGs by the global community we are in a grand revolution to shape the world towards a new resilient and sustainable future.


Role of Physics, Chemistry and Science in the Golden Revolution of Sustainability.

It has never been a time in human history where all needed Goals/Targets, Knowledge, Technologies, Human Resources and Communication Tools were known, available and accessible to perform collective and global revolution that allows bringing an inclusive sustainability right in our home, Planet Earth. This said, it has never either been so critical, urgent and imperative in all human history to put all our thoughts, efforts and resources together to save Planet Earth as we have it today. Planet Earth is facing enormous existential threats because of huge pile-up of degradation in climate, environment, biodiversity and the ‘socio-economic-environment’ qualities of our life.

The journey towards ‘sustainability’ has been very long with many and continuous ups and downs. We have only understood it late and agreed on it even later. So far we have succeeded to acknowledge it and to define what sustainability is, why it is needed and how to implement and achieve it on full scale and everywhere. It is not about if we can but is rather about when and more importantly how we could be able to maintain what we so far know, put them in practical actions to build robust sustainable and resilient life. Also, with all possible means we need it to be affordable and inclusive. So, we are in the most critical part of the equation with many imperative requirements to achieve what we defined as Goals/Targets. We will expand on these issues systematically in order to connect the dots of our Ability to Sustain Life, i.e. build SustainAbility.

Goals/Targets to achieve sustainability, or to at least to achieve resilience, are already summarised in the UN-SDGs that are now ratified by all countries. It remains to have a true political well by all the member states of the United Nations and more importantly to have serious, immediate and coordinate global collective actions to promote, implement, scale-up and scale-out the UN- seventeen goals and the associated targets ( The date to achieve all these ambitious goals by 2030 is not likely to be met but at least we should be on the proper roads and the appropriate tracks to do so.

Technologies that are science-based and sustainability validated need to be resilient, accessible, affordable and also adaptive for use anywhere. We have a Science-Technology nexus where science promotes technology and technology promotes science and visa versa. The cycle goes on and on where science and technology become improved and refined in a continuous non-ending process as our dynamic needs never ends but rather expand and accelerate. Among several examples on the connection between science and technology to achieve sustainable solution is how we arrived at the central role of electricity in our life ( In this context, tight and active participation of scientific and technical communities, i.e. universities, R&D institutions and industries, are essential both from the private and public sectors. This involves all the vertical and horizontal multilayered connections specially in education and the learning process. In the past century several innovations and inventions particularly in science, technology and literature including physics, chemistry, mathematics, biology, earth sciences and medicine, engineering, agricultural and human sciences just to name some, have widened and deepened our understanding of global economy, politics and also promoted our efforts to achieve peace, security, safety and equity but the later ones. Still more and more needs to be done to counteract the degradation of life quality on Earth.

Knowledge to promote and implement these goals already exist and indeed anyone of us can consult Professor Google to seek information, to learn and to know about ‘what, where, why and how’ to participate in the ongoing sustainability revolution. Yet, we need to work together with responsibility, transparency and accountability across many knowledge domains ( and not only in limited and narrow isolated disciplines based on fragmented and individual interests ( It is mandatory to increase our individual and collective participation with actions to work together ( with building teams, collecting and compiling appropriate knowledge as well as sharing our understanding and efforts by all available and accessible communication tools including the IoT ‘Internet of Things’.

Human Resources in this context are the bases to maximise our Ability to Sustain life on Earth by building resilient Human Resources ( This has been evident through out the human history and during all the past transitions from the hunter-gatherer era to the agriculture revolution and all the way through the various stages of the industrial revolutions up to the post information revolution. We have now a collective human library that describes the collective human intelligence, not necessarily the human intellect. That is more or less accessible and affordable ‘Google’ to use and guide us for a better and prosperous future specially what regards the management of human resources ( However, Google in itself just gives access to more or less all the known knowledge in the form of a ‘Black Box’ of ‘raw knowledge’. This access to knowledge needs to be sorted, refined and tuned for correct and proper use, also to improve through R&D for the sake of improving the global human resource capital. For developing critical skills for example Google has training and performance management programmes for human resources ( In this context, there must be a threshold of knowledge to get maximum benefit from Google which we can get through education and/or training, also through experiments including trial and error. By the end of the day, education and R&D are main vehicles for creating sustainable human resources empowered by the necessary knowledge.

Communication Tools are becoming increasingly available and affordable through ICT technologies ‘Information Communication Technologies’ that give us access to multiple services, businesses, education, trade, health and entertainment and are continuously shaping our daily life including for examples the diverse flora of social-media tools and instruments, e.g. Facebook, Instagram, Pinterest, YouTube, WhatsApp, Google Duo, private and public TV programs and….. many others. ICTs can help accelerate progress towards every single one of the 17 UN-SDGs. For example, helping to build resilient infrastructure, promoting inclusive and sustainable industrialization and fostering innovation and services that allow countries to participate in digital economy and to increase their well-being and competitiveness ( These tools and the IoT ‘Internet of Things’ in general allowed to boost various types of human-to-human, human-to-machine and machine-to-machine interactions and eventually evolved more and more to sophisticated automation, ML ‘machine-learning’ and AI ‘Artificial Intelligence’ technologies. ICTs are already empowering billions of individuals around the world by improving the access to education and healthcare, and many other services such as mobile banking, e-government and social media, among others. However, there are still considerable needs to promote/improve the global interconnectedness because of its great potential to accelerate human progress, to bridge the digital divide and to develop knowledge societies, as does scientific and technological innovation across e.g. areas as diverse as medicine and energy (

The desire to build sustainable societies is not new and it has always existed but we didn’t have access to enough knowledge, instruments and resources. These are among essential requirements that were highly lacking in integrated and coordinated manner throughout the human history. This has indeed caused serious confusion about what life on Earth is and how we can work collectively to have wealthy and healthy life on Earth. However, We give here two major examples from chemistry and physics that were indispensable for connecting science and technology on the one hand and for putting them for the service of society on the other. These two examples show that developing robust sustainable and resilient technologies do need solving, compiling and coordinating complex web of known and unknown details through huge and diverse machinery of R&D. Also, to recognize the enormous needs for at least interdisciplinary, multi-disciplinary work, if not full transdisciplinary interactions within and between, for example, physics and chemistry on the one hand, and all other scientific disciplines on the other hand. The feedbacks from physics and chemistry as well as from other sciences, e.g. earth, environment, life and human sciences, helped the evolution of sustainable science and technology specially in terms of understanding the life conditions and boundaries on earth and also to provide better services for humanity.

This said, to see the evolution in physics and chemistry in terms of sustainable developments we will put them in historical perspective what regards the addressed issues. In chemistry the periodic table of elements will be explained by life demonstrations ( This is to increase the added value of pedagogy in education. Indeed, all elements of the periodic table have find their way in our daily life in away or another that made our life easier but also created multiple threats through the increasing waste and pollution. We should keep in mind that we need to consider the Life Cycle ‘LC’ of all the elements from cardle to grave ( It is not only about processing, producing, using and consuming the elements of the periodic table but it is also about what are the consequences and impacts of the waste and pollution associated with all the elements, and their compounds, in the main spheres of the earth’s system (atmosphere, hydrosphere, lithosphere, biosphere and cryosphere. Many advances in chemistry and physics and other sciences were made possible through our understanding of the chemistry and physics (also in other sciences) of the all the elements of the periodic table, and their derivative minerals and compounds that resulted from natural processes in the Earth’s system, including reactions and interactions both under laboratory conditions and more importantly in the Earth’s system.

What concerns physics we will give a historical perspective of what electricity is and how electrons as moving charges carrying energies can produce also electromagnetic interactions and waves that carry information as well. The property of electrons to interact with energy, i.e. absorb energy, carry energy and emit energy, transform and transport energy as well as get annihilated and disappear all together have found enormous uses and applications, e.g. to produce and transport electricity to be used, stored and also to transmit, mediate and communicate information. Electrons are ‘energy and information’ messengers and you can imagine what we have and can achieved by understanding these mysterious particles that we still learn more and more about them. Indeed, electrons are the very bases of our today’s and tomorrow’s modern reality ( every-day life and services.

In this context, chemistry and physics as well as mathematics have jointly allowed, to major extent, understanding the details and very secrets of the electronic structures of all the elements of the periodic table. Thereby contributed in building up an enormous and indispensable database of knowledge and models that allowed to convert light to electricity ‘solar panels’ and to store electricity in well designed, safe, efficient and effective batteries (also with help of ICT), as is the case of Lithium-Ion Batteries ‘LIB’. Yet, more is expected to come. Also, they allowed us to enjoy all modern ICTs tools such as computers, cell phones, tablets, ….. and an enormous flora of sensors and actuators that are now being used in automation and robots. These have opened many gates for shaping new industrial revolutions, i.e. AI ‘Artificial Intelligence’ and ML ‘Machine Learning’. Not to mention the household machines and tools as well as the technical needs of our industries are all an outcome of the magic services of electrons.

Enjoy the two well-selected videos that illustrate to the science behind the chemistry of the periodic table and the physics of electricity.

The growing awareness of accelerated use (mining, processing and production) of several elements of the periodic table and the associated threats from pollution/waste and the risks to run out of reserves of critical elements promoted mote integration of sciences. The concept of Life Cycle Analyses ‘LCA’, the rise of Circular Economy ‘CE’ and the needs to integrate Environment Social Governance in global businesses are some examples of the necessity to consider transdisciplinary approaches to integrate sciences for promoting and achieving the UN-SDGs.

Source Cheri Koones, “creating-energy-independence-with-solar-panels–storage-battery-systems-in-the-home”

🛑 Fridays for Future – Global Climate Demonstrations.

Employees at Uppsala University UU, and the Swedish University of Agricultural Sciences SLU, joining the Global Climate Demonstration today Friday 24 September at Forumtorget in Uppsala around 15.30.

This is to show the leadership of UU and SLU their concern about the climate crisis, and to demand immediate action against the climate change. Universities need to show in practical terms and measures that they takes science seriously NOW, and they need to lead not only by examples but by actions as well.

Would Liquid Metal Batteries Revolutionize Energy Storage?

Energy is one of the three main drivers, i.e. water, energy and natural resources, of all life forms on Earth. The sustainability of these three main drivers is a pre-request for our survival and more importantly for the survival of all forms of life on Earth (, and more importantly for prosperity and improved life-quality. Unlike the other two drivers, energy conservation is of much more importance not only to satisfy our daily needs but on the first hand to cope with the many direct and indirect existential threats facing life. Also, how much energy we are consuming determines how much natural resources, including water, we would need for our activities. Energy in all its forms, either as stationary fossil or dynamic renewable resources, has complex interwoven challenges as it is strongly coupled to the social, environment and economic pillars of our modern lifestyle. Also, all energy production, distribution and uses are more or less, associated with different degrees and levels of negative impacts. Progress in energy conservation and renewable energy sources is determinant for the ongoing sustainability revolution not only to a climate-compatible circular economy, but also essential for achieving sustainable and resilient societies (UN-SDGs). We therefore need to be less dependent on fossil-fuel based-energy and to scale-up and scale-out clean and sustainable energy resources on the global scale. Renewables without appropriate affordable storage is not sustainable, we need also to have different sustainable and resilient storage alternatives for solar and wind energy solutions that can meet the different environment, weather and climate conditions. For example, limitations do exist in hot regions as in the MENA region and other parts in the world where the Li-ion batteries may not be the best choice. Also, manufacturing and production facilities need to be available where the natural raw materials for production are abundant. So, what regards batteries, one-size-fits-all option is unlikely to be sustainable and resilient under all conditions.

Moving away from fossil-fuel (coal, oil and gas) to renewable energy resources isn’t an overnight process as it is associated with many complex challenges specially what regards the huge needs of electricity generation, use and consumption, i.e. production and supply ( Solar and wind are becoming increasingly crucial for scaling- up and scaling-out the renewable energy resources. However, the very nature of these renewables by being intermittent sources and the fact that there is a wide-range of dynamic and variable needs by the stakeholders around the world in terms of intensity of energy needed in different applications.

One important aspect in the scaling-up and scaling-out the use of the renewable energy resources of solar and wind energy is battery-storage. Li-ion batteries, though are currently one of the best storage facilities, they still have several limitations to fulfill full scale applications that are required by the markets’ needs. Lithium-ion batteries are not necessarily the only ‘one-size-fits-all’ solution for the energy storage of renewable solar and wind energies. They prone to fire and require extensive non-renewable resource extraction from the earth which may not be sustainable in the longer run because of the side-effects associated with their production and processing as well as the complete LC ‘life-cycle’ of the batteries, i.e. effective recovery of the raw materials.

An alternative new technology for energy storage is emerging in the world market. The US-based Ambri is now one of the so-far leading alternatives in energy storage and it aims to lower electricity costs, enable easy access and widespread usage of renewable energy systems, among other things. It is doing this by working on alternatives to lithium-ion technology such as liquid metal batteries and antimony electrode-based cells that are more resilient, long-lasting and eco-friendly (; This liquid metal battery is an innovation in stationary electricity storage invented by Prof. Donald Sadoway, MIT, USA. At present Ambri can cater to projects that require energy storage systems from 10 MWh to 2 GWh. Energy-intensive industries need to reach climate neutrality by 2050. Various technologies are available for the decarbonisation of the iron and steel, chemicals, refining and cement industries as well as the existing financial instruments ( However, suitable energy storage technologies are still needed to help shape and enhance the transition to a climate neutral industries, specially the energy-intensive ones, not only in Europe but around the world.

Energy storage is vital not just for the business of mobility but for reducing the overall cost of electricity and, more importantly, mitigating climate change. It plays an integral role in the development and integration of renewable energy technologies—a technological space that is seeing rapid development. Energy storage is an indispensable bridge between intermittent renewable power and a constant, glitch-free supply of electric energy. Achieving sustainable and resilient societies would require having diverse and customized solutions to meet an increasing need of off-grid and decentralized energy-options, e.g. in rural and remote areas for household ( and also for energy-intensive industries (;; As this will unload overpopulated urban areas and cities. The needs of such options are timely because of the huge flexibility that is offered by ICT ‘Information Communication Technology’ and AI ‘Artificial Intelligence’ that allow not being totally dependent on urban areas and cities. Agriculture and rural areas are still essential for our living and they are the underlying platform for supporting urban areas and cities.

It is still interesting to see how this new approach of liquid metal batteries for storage of renewable energies from solar and wind will continue their long-term progress (

Ambri a new addition to battery technology.

Political Correctness and Academic Stewardship: Management and (Skewed) Control in Swedish Universities.

Before introducing the lecture and presenting a previous related debate about the situation in Sweden regarding politics versus quality in higher education. We need to keep in mind that multi-layered paradoxes and controversies do exist around the world, but in different degrees, what regards the political correctness, political power and related needs in the society including quality of education, science and R&D. These are import and crucial as education, science and R&D are essential driver for the appropriate development and advance of societies and humanity in general. What do we expect without them?

Let us for example see the relation between science and politics as debated in one of the most reputed scientific journal ‘Nature’ in the article ‘Stick to the science’: when science gets political ( It has three parts: history of science and politics; politics of the life scientific; and talking politics and talking science. Science is objective and evidence-based while politics is more about power, economy and balancing the needs of the society as emanated from the voters. The drivers of, and support for, science and politics are very much different but through out history there have been always mutual needs. More recently politics shifted more and more towards the society much more than science, e.g. equity and over many other issues defined by the UN-SDGs. There are also other facts need to be taken in consideration politics is much more short-sighted, in some sense, as compared to education, science and R&D. This is why politics shifts and swings relatively faster than education, science and R&D. In reality, funding of research councils and other funding organisations are based on political and economic decisions and when money and people are involved then science become impacted or even turbulent. Science never acted in vacuum and it has been always mutual interactions. This doesn’t necessarily need to mean that objectivity in science and higher education becomes cloudy and looses its main pillars of being evidence-based. Indeed, what regards science and politics, when science becomes only captured by normal politics, its value declines and drains away ( That is the case in many places around the world even in modern times where science is poorly needed to solve our existential wicked and complex threats as summarized in the UN-SDGs. Apart from politics there are other actors that can influence the outcome of education, science and R&D including culture, religion, believes and social fabrics.

Now, to the subject of this post, i.e. the Institutional Colloquium hosted by IFA, Uppsala University with the lecture of Prof. Mats Alvesson (Lund University) – Title: Management and (skewed) control in universities and colleges. Text in English is about the same subject and was previously published as an article in Swedish Newspapers (ppl).

The Colloquium will take place on Tuesday the 14th of September on 11:15 AM at Ångströmlab. Institute of Physics and Astronomy, Uppsala Univesity, sal 2005. It can be also followed online at Zoom-link:

The Lecturer. Mats Alvesson (website is a professor at Lund University and also Univ. of Queensland, Australia, and City Univ., London. A Wallenberg scholar and one of Europe’s most quoted social scientists. His research area includes organizational culture, leadership and identity within organizations as well as a qualitative social science method. He has been particularly interested in functional stupidity. The concept was launched (together with André Spicer) in 2012 and is officially used in Sweden. Mats Alvesson is a diligent debater and author.

Institutionskollokvium: ‘Ledning och (sned-) styrning i universitet och högskolor’. Sammanfattning. Universitetets huvuduppgifter bör vara att bedriva god utbildning och forskning. Men dessa mål styr endast och i mindre utsträckning verksamheten. Andra funktioner och intressen tar överhanden: studentnöjdhet (vid kursutvärderingstillfällen), hög genomströmning, lärarnas karriärsoptimering, få allt att se bra ut, göra formellt rätt, imitera andra organisationer, expansion av administration mm. Ofta blir utbildningar kravlösa och ribban läggs lågt. Mycket forskning är av tveksamt värde och relevans. Föreläsningen tar upp problem i dagens universitet och högskola och pekar på lösningar.

The Colloquium/lecture in English: ‘Management and (skewed) control in Swedish universities and high schools’. Summary. The university’s main tasks should be to conduct good education and research. But these goals only and to a lesser extent govern the business. Other functions and interests take precedence: student satisfaction (at course evaluation opportunities), high throughput, teachers’ career optimization, making everything look good, doing formally right, imitating other organizations, expansion of administration etc. Educations often become unpretentious and the bar is set low. Much research is of dubious value and relevance. The lecture addresses problems in today’s universities and colleges and points to solutions.

The talk will include issues that was previously published in a Swedish Newspaper (än-kvalitetskrav-på-universiteten-1.38029174), here is the English translation:

Political correctness is more important than quality requirements at universities.
Debate. The universities will function as independent institutions that will be responsible for independent research and education on a scientific basis. As it looks today, however, the university’s management is increasingly acting under the influence of trends in the public debate and adapted education according to what is considered to be the right opinion in comparison with the wishes of the government, rather than creating a high quality business, write Mats Alvesson and Erik J Olsson Lund University. At the turn of the year, several heavy universities change rectors; for example Lund and Uppsala. In Linköping, a new principal has already taken office. Universities are primarily intended to be independent institutions that will be responsible for independent research and education on a scientific basis. However, this is in a state of tension, partly due to the view of universities as authorities, and partly to an increasingly widespread pressure to adapt to different opinions and different perspectives. Universities and colleges are authorities, which to a certain extent is reasonable, but the activity is undermined if government thinking is allowed to dominate, which leads to everything first and foremost being formally correct and characterized by loyalty to the wishes of political power. The focus will be on formalities rather than a good business.

The fact that universities are treated like other authorities is an expression of thoughtlessness. It will be easiest then. It will also be easiest for university managements who emphasize the government perspective more than the universities’ deeper assignments.

University managements often fail to safeguard the universities’ basic idea, which takes on different expressions. Here are some:

(1) Inappropriate recruitment and promotions. In many places, the principle of meritocratic recruitment has been abandoned and the employment of people who are in the heat has been accepted. Rather than professorships being announced and appointed in competition, resources have been used for internal promotion, with lower requirements and competence as a result.

(2) Gender quotas. Everyone is, of course, for equal opportunities regardless of gender. This is a difficult issue that may require investigation of obstacles and their remedies. In many places, however, gender equality has been interpreted as equal outcomes that are easier to measure and tick off. Counting the gender of course literature writers does not benefit the quality of education. There is a marked over-recruitment of women as professors, in relation to actual merit. Karolinska Institutet is an example.

(3) Improper influence. Engaging in politically sensitive research has its risks, as illustrated not least by a current case in Linköping. The researchers, who questioned the Crime Prevention Council’s political independence, were subjected to administrative abuse and a miserable work environment at the university. A student at the University of Agriculture who in a debate post criticized the animal husbandry of the business community was called to the university management to explain himself.

(4) Culture of insult. In Uppsala, a teacher’s statement of the n-word in a course in archive search caused great uproar. A student at KTH who produced statistics on immigration and crime was called to the director of studies and HR manager. The statistics were in themselves considered offensive. Lund has had several incidents where a few students felt offended by the teaching, which led to the courses being changed.

(5) Low demands on students. In many educations, the requirements are so low that full-time in reality means half-time or less. Most university and college managements seem to take a let-go attitude to this. Many who graduate are unqualified. 6. Opportunism. Sense of trends and need to be seen is strong. Sometimes honorary doctorates are used to get PR. Luleå University of Technology, for example, has recently appointed Charlotte Kalla an honorary doctor.

Of course, university managements cannot be blamed for all this, but they bear co-responsibility for the universities’ increasingly weak academic orientation and weak results – by following the current, doing what is easiest and minimizing risk. In terms of level of education, for example, the principals contributed to a reduction by pushing for the replacement of external review of degree projects with internal quality bureaucracy. Principals should primarily be university advocates and not government officials. It is more important to present the university’s mission, than to show sensitivity to politics, current opinions or uncritically follow dysfunctional regulations. It is important to safeguard what should be the point of universities and colleges: to primarily create high-quality research and education. It is not to demand too much that university managements here take their responsibility.

By Mats Alvesson, Professor of Business Administration at Lund University. Erik J Olsson, Professor of Theoretical Philosophy at Lund University, Chairman of the Academic Rights Watch Foundation

Political correctness is more important than quality requirements at universities

Emergency Action to Restore Biodiversity and Protect Health from Global Environment Crisis

Indeed, it is not only about climate change anymore it is rather about a much wider large-scale and long-term Environmental crisis with unpredictable and irreversible impacts on biodiversity in general and the global health of humans in particular.

The combined effects and consequences of the ongoing degradation in biosphere, hydrosphere and atmosphere on biodiversity and human health would create severe health threats for all life forms on planet Earth. These degradation are brought about by environmental (e.g. pollution and waste) and climate change because of green-house gases specially carbon-dioxide. There are already signs of such effects but not yet understood and systematically researched. Such wicked and complex problems are new in science in general and medical ones in particular, They can’t, and will not, be cured by medical treatments and far beyond human capabilities to deal with even if the multilayered unknowns will be known. The functioning and metabolism in our bodies depends very strongly on the environmental conditions including the temperature. This wasn’t known for Darwin.

The UN General Assembly in September 2021 will bring countries together to meet again at the biodiversity summit in Kunming, China, and the climate conference (COP26) in Glasgow, UK. This time is about the serious situation what concerns the risks to health of increases above 1.5°C, which are now well established. The call in this post is stating that “Indeed, in the past 20 years, heat related mortality among people aged over 65 has increased by more than 50%. Among other things higher temperatures will bring about increased dehydration and renal function loss, dermatological malignancies, tropical infections, adverse mental health outcomes, pregnancy complications, allergies, and cardiovascular and pulmonary morbidity and mortality. Harms disproportionately affect the most vulnerable, including children, older populations, ethnic minorities, poorer communities, and those with underlying health problems”.

Editorial Board of BMJ for emergency action to limit global temperature increase, restore biodiversity, and protect health ( As stated in this article “Health professionals are united with environmental scientists, businesses, and many others in rejecting that this outcome is inevitable. More can and must be done now—in Glasgow and Kunming—and in the immediate years that follow. We join health professionals worldwide who have already supported calls for rapid action.”

Though the current attention ⚠️ is focused on climate change we have to take in consideration many other large-scale and long-term threats that are associated with the increasing environmental degradation from pollution and waste. This calls wider actions to promote and implements the UN-SDGs.

New on the Editorial Board – Mr. Safwan Elfar, Qatar National Cement Company, Umm Bab, Qatar.

It is a great honor to have Mr. Safwan Elfar on the Editorial Board of

Mr. Safwan Elfar has a B.Sc. in natural sciences, with major in chemistry, from Qatar University. He started his career in the cement industry at Qatar National Cement Company ‘QNCC’. Currently, he is the laboratory supervisor, quality assurance and control professional at QNCC with cumulative scientific-technical engineering experiences in cement manufacturing processes and related materials.

During his career, over 20 years, he also gained diverse interests in environmental impacts of the cement industries and their by-product. He successfully developed recycling solutions for the cement-kiln-by-pass-dust by-product for use in zero-cement-content paver blocks (green concrete). He further uses his experience for other sustainability applications. As other cement companies around the world, including the MENA region, QNCC ( is continuously updating its facilities and routines.

Irrespective to the fact that cement is among the most important materials in the building industry, there are still increasing pressures to minimize its manufacturing negative environmental footprint, for instance producing one ton of cement releases one ton of CO2 gas. Currently, 5% of global CO2 emissions is related to cement industries.

For more info. on Mr. Elfar, visit

The COVID Pandemic – Safety-Security Micro- and Macro- Imperatives and the UN-SDGs.

Is the COVID pandemic over? Do we have validated and clear global answers? The vaccinations were expected to solve everything but this isn’t the case anymore and we understand that vaccines are not enough (

Recent surges in Covid-19 cases due to the delta variant are reigniting discussion on return-to-work. With Apple and Alphabet, for example, postponing return-to-work plans until October. In this context, other companies and employees are reevaluating whether they want to return to the office. If so, how to maximise safety and security issues for their employees and the rest of society in general. For example, the return to in-person work on a trial basis can be a solution and many companies like Apple and Google are designing hybrid work solutions and models with shortened work week rather than a full five-day week, though the resilience in each company’s hybrid model does vary (

Even with the social nature of human beings will lead more workers to see the benefits of being in a workplace again. This isn’t the case for everyone and outdated standards of one-size-fits-all that still characterise conservative and traditional business-as-usual strategies need to be re-evaluated. This is, as health and safety concerns are likely to continue and will still make many employees resistant to work in office. So, employers may need to offer “trial basis” returns as a first step and to assess and quantify the large-scale and long-term outcome on equal foot as short-term and small-scale versions, of whatever the solutions or models they may use.

With the existing cloudy situation new questions and recommendations are emerging. Do we always need offices? ( Indeed, many traditions need to be revisited, e.g. for what? when? also why? do we need offices? Do we really use, practice and benefit from ICT technology optimally? By the end of the twenty century they were many promises and expectations that ICT would give more resilience in working and allow people to be less dependent on offices. But, many of these promises and expectations became more and more volatile though the huge expansion of ICT ‘Information Communication Technology’, automation as well as the accelerating use of AI ‘Artificial Intelligence’ and ML ‘Machine Learning’. Also with the existing enormous needs to mitigate climate change and environment degradation as well as improve the life-quality in general (UN-SDGs). No question, transport and traffic issues can cause unnecessary stress, cost and inconveniences as well as more emissions of green house gases and pollution ( As an example, what regards gender and life-quality return to work it is harder for women ( As people attempt to return to work, child care costs burden women more than men. Jobs don’t offer flexible options and don’t pay enough to cover child care costs. Do we afford to put future generations at more risk? Therefore, women are likely to stay home and not because they don’t want to return to work. COVID has allowed us to know more about the roots of poverty, gender and social inequalities.

Even with the new trends of trial basis and hybrid solutions there are still recommendations of what employers need to reconsider and what employees need to demand in their work places ( Among these it is required to know to which extent have coronavirus safety precautions changed in workplaces; What safety measures would be needed for workers in all settings?; Which types of employers and businesses might see the biggest changes right now?; What steps can workers take to keep themselves safe at work? What steps they should take when they get home?; What safety advices for people commuting and what employers can do for them?.


The vaccination dilemma continues to emerge as worldwide data with somewhat, but not yet enough, increased statistical validity are becoming widely available ( There are several key issues in this respect on the global, regional and country/local levels. The global and regional levels are dealt with primarily by the WHO. Though its considerable value in assessing the global data and monitoring the global trends of infection and its spreading, it has limited economic potential to influence the worldwide vaccination. This is part of great global discrepancies in the vaccination rates and frequencies. This creates huge constraints in the global health issues, in particular to achieve the UN-SDGs what regards health, education and poverty. There are no other worldwide organisations that have either economic capacity or economic responsibility to raise the vaccination rates on the global scale.

So, we still have an ongoing global dialogue about who will be vaccinated and who will get a boost of a third shot of vaccine ( This adds new dimensions to how to handle the vaccination resources on the global scale. There are several reasons for the existing cloudy situation of the vaccination what regards its effectiveness, accessibility and availability. The Pfizer shot, for example, was only 39 percent effective in preventing symptomatic Covid infection from late June to mid-July, a nosedive from levels seen this winter and early spring. Though this observation is based on small group and covered narrow window of time, it has however triggered the needs for offering a booster of a third shot to people over 60 who were vaccinated more than five months ago. According to different sources the delta variant is more contagious and likely more severe than its predecessors, this has also raised prompt discussions on whether booster shots can stem them and once again restore the impenetrable immunity of vaccinated people.

The global penetration of vaccination is still a serious problem as some countries are almost ready with the vaccination of their overall populations while others have very low vaccination rates with only few percent of the total population are vaccinated. On the other hand countries with very high vaccination rates of 80% have more or less the same spreading rates of COVID as the countries with very small vaccination rates. This raises new worries that vaccines are not a guarantee against further surge in COVID cases and thereby additional risks for development of new mutations. For example, European countries where cases are increasing serve as a reminder that vaccination progress is not a guarantee against a new surge in COVID cases even in other parts of the world.

We still are getting new data about the efficiency of vaccines, for example moderna claims that their COVID-vaccine booster produces more robust response against the delta variant ( Data from different countries that used different vaccines, e.g. from China, also suggest that we still have little, or not enough, knowledge on the global effectiveness of vaccines specially what regards their long-term and large-scale behaviour with consideration to all the parameters involved in assessing the wicked issues COVID spreading in relation to vaccination and opening of economies.

A medical worker from Parrish Medical Center holds a vial of the Moderna COVID-19 vaccine at a drive through vaccination clinic for employees of Port Canaveral, workers at local hotels and restaurants, and residents of the Port Canaveral community.
Paul Hennessy | LightRocket | Getty Images

From Education to Industrial Education to 21st Mega Social Revolutions in Education

With the growing ’needs’ for knowledge we have first to know the ‘purpose’ of education. We have also to take in consideration the ‘construction of our societies’ and what is ‘meant’ by knowledge.

Indeed, there are many aspects of what we mean by ‘need’ and what we mean by ‘purpose’ as both are connected in several ways to each other what regards ‘knowledge and education’. Also, the ‘socio-economic environments’ of our societies that are part of both the need and the purpose of knowledge to be acquired by us and our fellow citizens.

Currently, we have a modern dilemma of a growing confusion on many levels about both the purpose of, and the need for, education as an instrument for acquiring knowledge. Part of the confusion is related to how to put the purpose in appropriate manner to fulfil the needs on individual levels or common collective levels in certain socio-economic context. The path between the purpose and the need in many cases is not straightforward and sometimes not known at all or at least not well-defined. On the other hand, it is logic to think this way, no one whether an individual or an institution gets interested in education without knowing the need of, and purpose for, education. Both the purpose and the need are related to the socio-economic conditions which further makes the educational process challenging on several levels.

Another aspect is how knowledge is being acquired. Is it acquired by accumulation of knowledge in our intellectual memory? or is it by developing it through independent and indepth consciousness where intelligence is a path for innovation? In this context, it seems that it is mandatory to get some sort of orientation or introduction about what raw knowledge is, if so what type of education can be suitable, i.e. in terms of purpose and need. It is like when you prepare a meal you would need raw ingredients but there would be huge options of both how you get the ingredients and how you prepare a meal for your own. In this context, raw knowledge can be a necessary pre-request to create new knowledge that are specifically needed to navigate in society and create meaningful life where innovation is a tool rather than what exists in the memory. Both the purpose and the need are related to the basic aspects about knowledge i.e. ‘what, why, when, where and how’ to acquire knowledge.

Knowledge is needed for all of us but for different purposes from both the society and the individual viewpoint. Knowledge as based on previously ones doesn’t lead to new jobs or new solutions it just create new copies for purposes that aren’t needed any more. Even if knowledge is needed only to get a job or to participate in socio-economic activities it is still an individual responsibility to freely select, shape, reshape, extend and practice in new forms that can be suitable and practical for one’s carrier and lifestyle. This is assuming flexible and resilient educations systems and democratic environments exist which aren’t necessarily the case everywhere.

When the purpose for which knowledge coincides with what we need it for then this type of specific knowledge is appreciated. Acquiring knowledge is always dynamic process as the purpose and need as well as the socio-economic context are all variables and can be volatile. There are no standard packages of knowledge that fits all of us under all conditions. We can put it this way there are no general keys for success in all part of our life except to be open-minded, critical and intelligent enough to select, compile and put together the necessary knowledge to fulfil whatever needs that may emerge.

The purpose of acquiring knowledge in the past century, by the global education systems, shifted gradually from being a resilient education process, that supports the free and unconditional choice of individuals to gain and access knowledge in any form or content, to a rigid well-defined chain of blocks and pre-defined frames for a mandatory entrance to the labor market. This has turned the whole education system worldwide up-side-down and made it an industrial enterprise for production of certified but in many cases unqualified graduates for the market itself. In this process, all the proper connections between the purpose for, and the need of, education were also systematically lost or at least disconnected. If education is about producing copies of intellectuals then it is a catastrophic machinery that makes everyone of us question the purpose of education and its need for a market that is already saturated. Did the institutions, whether schools or universities, fail with their mission to deliver appropriate education to the society in general and the market in particular? Or are the needs for independent graduates that can master their careers and lifestyles, just disappeared?

A global common instrument to acquire knowledge is education and it has been accepted at least in the past century as an instrument to satisfy our existing and emerging needs on the one hand, and to assist individuals to participate in shaping and forming the democracy in the society on the other hand. However, in past century education changed from being a resilient instrument to acquire and develop knowledge, to a one-size-fits-all instrument, primarily to get the very same jobs that have always existed. Moreover, the market in different forms penetrated and dived deep in the education systems, directly or indirectly including the private and public sectors, and made these systems extended arms for the industry and economy including traditional and out-dated ones.

Artificial Intelligence ‘AI’ and Machine learning ‘ML’ will further extend these arms. As the human memory has very limited capacity, the only way to benefit from education is not through competition on how much we can accumulate in our memories but rather by collaborative innovation through diversification of human intelligence. Current education systems of one-size-fits-all is out-dated and not suitable anymore. Future teachers have to invent and innovative far beyond being dependent on memory-based education. Deep consciousness in selecting and compiling knowledge and not blind compulsiveness in mediating the same knowledge is important for the innovation in communicating and developing knowledge. This is specially what regards promoting and implementing science and technology for the benefit of human-being with consideration to the UN-SDGs and for achieving prosperity on planet Earth.

Since the end of the 20th century new positive mega trends emerged but net yet fully utilized, i.e. scaled-out and scaled-up. There are great potentials to turn the failure in education machinery to considerable benefit for the mankind. These are ‘ICT’ Information Communication Technology and ‘IoT’ Internet of Things, ‘SMI’ Social-Media Instruments and of course the United Nations Sustainable Development Goals ‘UN-SDGs’.

These are major mega transformations that are already forming and shaping our societies very fast and with enormous power in many aspects and will continue to do so for generations to come. Unprecedented transformations are already taking place and the reasons are becoming very clear as we proceed in the 21st century. For the first time in human history we are heading to more resilient future that can free us from the so-far dominant Industrial Education Systems ‘IES’ with very destructive traditions of compulsiveness, forced competition, monopolies and unnecessary mismanagement of education. The strategic questions that we have to address now so as we can accelerate the benefits from these Mega Social Revolutions ‘MSRs’ for everyone and everywhere are: how can we tame these MSRs and unify them so as everyone of us turn education more and more to a Social-Use-Me-Instrument. This is of course possible but needs time, patience and Innovation. This will not happen overnight and it is about putting together these Mega Social Revolutions in an applied and effective framework with collective infrastructures.

Many of the issues addressed above are also taking place in R&D which unfortunately have catastrophic consequences for the life quality on planet earth. These naturally have also negative impacts for the prosperity of the majority of world population. Of course there are still some winners but if we don’t find solution all of us will suffer without exceptions as we have experienced, and still, with COVID-19. As in education the MSRs will help R&D to create new pathways for better future through innovations and inventions to protect and preserve life on planet Earth but the time-window to do so is becoming smaller and smaller so we have to intensify and accelerate our efforts to save our planet from further degradation and destruction. will expand on these issues in the future.

However, to start with follow this video that gives some basic aspects and dimensions about what key media-professionals say about education:

Violation of Work Environment and Code-of-Conduct also at Highly Ranked Universities

Statistics and reports don’t emanate from nowhere and it is true that ’no smoke without fire’. For many years, universities have been acting as closed clubs with their own internal rules for assessment and evaluation. The mis-trust in the performance of universities has been growing for many years because of their failure to solve population and society needs. More remarkably is to update their systems to help young people to find jobs and to meet future challenges. The universities are more internally focused on how to survive and their staff are busy searching for funds and own promotion. Gradually they are increasingly isolated from both the society and population needs, as it is clear from failing to integrate the UN-SDGs in their activities.

Nature (one of the world’s most cited scientific journals) has published several reports about the malfunctioning at universities. For example the infected work environments with many cases of victimised colleagues, e.g. Lund Univesity in Sweden (; Max Planck Institute of Garching in Germany (,

There are also many other examples of unhealthy working conditions at our universities. A global study highlights long hours, poor job security and mental-health struggles. This study ( involved more than 4,000 scientists who has painted a damning picture of the culture in which they work, suggesting that highly competitive and often hostile environments are damaging the quality of research and education. This is specially true among young Ph.D. students ( where they expressed the widespread and deep-seated frustrations with training, work–life balance, incidents of bullying and harassment, and cloudy job prospects (see ‘Free thinking’). This survey also included new questions suggested by early-career researchers, including ones on student debt, bullying and harassment, and career responsibilities. A question about mental health — asked of all respondents for the first time — shed light on some of the more troubling effects of higher education.

Some funding organisations ( started to take serious steps for cracking down on harassment and bullying. Scientists who have been sanctioned by their institutions could lose out on funding from e.g. the Wellcome Trust in the U.K., one of the world’s largest research-funding charities. Another funding organization, in the U.K. ‘The Leverhulme Trust’, has revoked a £1-million (US$1.3-million) grant from prominent palaeontologist who was also disciplined by his institution, the University of Bath, UK, after an investigation found he had breached its anti-harassment policy ( An elite US science academy expels a well-known astronomer following harassment complaints ( This is the first time the National Academy of Sciences has kicked out a member for violating its amended code of conduct. It is clear that they are much lack of actions by strategic funding organisations and well-ranked universities around the world to follow the example of the U.K. and the U.S.

It is also documented that sexual harassment is rife in the science ( Existing policies to address the issue are ineffective, concludes a long-awaited report from the National Academies of Sciences, Engineering, and Medicine. The NAS ‘the U.S. national academy of science’ told Nature that no one has used the complaint system put in place last year, even though several academy members are known sexual harassers. It is unfortunate that we let negative and destructive attitudes, what regards gender issues in general, to exist in our academic environment (

Enough is enough, we know what are the problems but we still don’t know yet how to cope with the corruption, abuse of public resources and how to improve the working environment at universities and our academies. With increasing globalisation and mobility of young academics and qualified professionals in the global landscape of science there are still huge needs to re-examine the existing multi-layered structural defects and obstacles to achieve sustainable/healthy working environments. Higher education should not be part of the piling-up social injustice and ought to demonstrate good leadership in the global journey for prosperity.

COVID-19: Crisis and Challenges in Higher Education. The New Imperatives and Opportunities.

COVID-19 has changed the reality of life for many of us and will continue to do so for sometime. The first sectors that suffered from the COVID-19 pandemic were health services, the tourism and hospitality sectors along with other labor, trade and industry sectors.

Higher education, and education in general, has also been impacted by COVID-19 in various ways and are facing a global crisis that may take relatively longer time to recover depending of level of preparedness, availability of resources, existing infrastructures and degree of resilience. However, the crisis in education and higher education didn’t come as a surprise as it has been an ever growing cracking in higher education and global education systems in general, since the birth of ICT and IOT, and even before that. Indeed, many education systems around the world are either inherited or imported which have caused ever increasing gaps between what students get from their education and what is really needed in the market specially in the developing countries. Another short coming in higher education is the strong rooted tradition in out-dated disciplinary-based education systems where graduates have serious difficulties to meet today’s complexity in the labor market. The ongoing crisis is of global dimension and has introduced remarkable effects in R&D and also the associated educational infra-structures.

COVID-19 has changed our world dramatically and as we have in business and trade if you’re a brick-and-mortar retailer, an online store is no longer a nice-to-have; it’s essentially a must-have ( It is an inductive process that will be propagated very fast in all other sectors with far many new imperatives. All people simply need to be able to find you and communicate with you online. The COVID-19 has put new imperatives on sharp display when many brick-and-mortar stores were forced to temporarily shut their doors. Having an online store was the only way forward and it is likely that our world will change, at least partially in this direction as was the case with the old postage-system, to online banking, on-line booking of hotels, food, travels and all other ICT-services. Indeed, education will follow the same trend in a way or another. Though, the brick and mortar framework will still be the mainstay of our education system, for sometime, because of its undeniable advantages to learning in a shared physical space, online education is progressively and continuously gaining popularity. Still there are obstacles that need to be solved and will be solved. It is not a matter any longer of IF but rather WHEN and when was already yesterday. The autonomy and flexibility of e-learning make them extremely popular with working professionals and students as the entire e-learning industry is changing rapidly. This is an essential part of the ongoing Information Revolution.

Though there can be challenges to successfully tune and transform higher education systems, and the whole education landscape in general, from Brick & Mortar to Click & Mortar ( there are major long-term benefits and opportunities for generations to come. However, as we have learned from history higher education, and education systems, by being part of our social landscape are very much dependent on our lifestyle. Our life as we have it today and as it would be in the future is very much impacted by moving away from Brick & Mortar to Click and Mortar as the digital technologies are definitely here to stay and we have to adapt to this imperative reality. will expand on many issues related to future threats, challenges and opportunities what regards higher education and and education in general.

Nature – The virus that causes COVID-19 is to be endemic.

The virus that caused COVID-19 has been with us for more than almost seventeen months and will continue in many parts around the world until late this year. It has been the dream for all of us that it will go away, but yet it is still everywhere all over the places around the world.

It’s been a continuing challenge for scientists and researchers to get rid of it and free us from its threats. However, most scientists think it’s improbable. In January, Nature asked more than 100 immunologists, infectious-disease researchers and virologists working on the coronavirus whether it could be eradicated. Almost 90% of respondents think that the coronavirus will become endemic — meaning it will continue to circulate in pockets of the global population for years to come.

Fortunately the scale of the fear that we lived with will not continue on the same scales that we have seen so far. The future will depend heavily on the type of immunity people acquire through infection or vaccination and how the virus evolves accordingly. It is still difficult to predict exactly how the future would look like. A combination of annual vaccines and acquired immunity means that we will be able to tolerate the seasonal deaths and illnesses they bring without requiring total lockdowns and needs for continuing using masks and forcing social distancing in public places.

In zero-COVID regions there would still be continual risk of disease outbreaks, but they could be quenched quickly by herd immunity if most people had been vaccinated. Even if COVID will be eliminated from some countries there would be still risks for continuing reintroduction from places with limited vaccine coverage and ineffective public-health measures.

Countries that have begun distributing COVID-19 vaccines soon expect to see a reduction in severe illness. But it will take longer to see how effectively vaccines can reduce transmission. More than 70% of the researchers surveyed by Nature think that immune escape will be another driver of the virus’s continuing circulation. Living with endemic coronaviruses, frequent reinfections seem to boost immunity against related variants and typically people will experience only mild symptoms. Yet it is possible that vaccines won’t stop some people developing severe symptoms. Another fear comes from animal reservoirs and the future of COVID-19 will also depend on whether it establishes itself in a wild animal population. As is the case of several other diseases that have been brought under control but still persist because animal reservoirs that provide chances for pathogens to come back into people.

Read the full report at

Importance of Open Access and Social Media to Improve R&D.

COVID-19 and the vaccines against it demonstrated very clearly the importance of conveying not only R&D but also the responsibility of the stakeholders of R&D ( and the end-users what concerns Quality Assurance ‘QA’.

Traditionally, the conventional approaches in R&D are having an internal ‘QA’ by Peer Review systems (, e.g. in journals, funding organisations and patent-offices. The function of peer review is to evaluate the R&D by people with similar competences, i.e. peers. So, it is self-regulation by qualified experts within the relevant field in order to assure high-quality standards, enhance performance in R&D and certify reliability and credibility in the science and technology. These are often used to determine the suitability for academic publication in different types of activities in various fields or professions, e.g. medical peer reviews.

The ongoing Information Revolution promoted the expansion of the social media, improved access to knowledge through the World Wide Web ‘WWW’ and enhanced quality of Google search motors. At the same time we are experiencing a fast development in the fourth industrial revolution empowered by Artificial Intelligence ‘AI’ and Machine Learning ‘ML’ where Internet-of-Things ‘IOT’ is allowing more and more greater refinement and enhancement in social media tools.

Closing the gap between R&D through Open Access and Social Media instruments are essential parts of the Revolution in the Information Communication Technologies ‘ICT’. This unprecedented revolution is also important for improving the quality of R&D what regards the safety and security of the global citizens on the one hand, for the promotion and implementation of the UN-SDGs on the other hand.

A timely example is the involvement of the global population in how good is good what regards the vaccines against COVID-19. Read more about clear links between AstraZeneca and rate blood clots ( and associated possible recommendations (

Would Mandarin be the Second Global Language in the Future?

普通话会成为未来的第二种全球语言吗? 非洲和亚洲的趋势正在见证全球语言转换领域的这种持续变化。As we know “If you speak to people in your language, it goes to their heads but if you speak in their native language, it goes to to their hearts”.

With China is growing very fast to be soon the world super economic and financial power (;, as well as driver of trade and development not only in Asia but also in Africa. There are a lot of new facts and debates about what China is in reality and how the world would look like in the coming decades until the end of this century. In this context, is quite interesting to see the new trends in the expansion of the Chinese Mandarin language in the world education systems.

South Africa, in January 2016, cemented its place in history by becoming one of the first African countries to integrate Mandarin into its public school curriculum. This has ushered in a new era of ‘Mandarin language rush’ with other African countries following suit. In December 2018, Uganda also integrated Mandarin Chinese as a second language into their schools. Also, the introduction of the Mandarin Chinese language to East African school curricula signals China’s growing influence in Africa as a global superpower. In January 2020, Kenya’s Curriculum Development Institute announced that Mandarin will become part of Kenya’s school curriculum as an optional subject in elementary schools. Kenya is the latest East African nation to follow the Chinese-language trend in schools after Tanzania, Rwanda, Uganda (, Zimbabwe and South Africa, among others (

The introduction of Mandarin is considered to be a key step towards creating beneficial developmental relationship for both sides. Many of the supporters see this step as a positive policy change that gives many African learners the opportunity to not only learn one of the most difficult languages in the world, but also compete effectively with their counterparts the east and the west in a rapidly changing and growing global market. Given the fact that China is currently one of the biggest players in the global market, they believe that Mandarin will enable African countries to solidify their economic partnerships with the Chinese. The supporters argue that many African countries have integrated French, English, Portuguese, and German languages in their public schools yet no such uproar as is being witnessed with Mandarin has ever been raised. The current opposition for the introduction of Mandarin is but a veiled attempt orchestrated by western powers to limit the economic influence of China in the region. Whether or not the ‘Mandarin language rush’ is a case of Chinese neo-colonialism, or developmental relationship, only time will tell.

However, China’s influence in Africa grows as more young people learn to speak Mandarin ( and many many more will continue to do so. Let us give some few examples on how young Africans get motivated to take up Mandarin as their second language or at least their third language. We have to keep in mind that many Africans have English as their first or their second language. The tradition to take a European language such as French, German or any other is becoming largely outdated for many reasons, this is at least for the young Africans.

Mugandiri didn’t have any Chinese contacts until he write a letter to the Chinese ambassador in Harare and in less than two months after that, he had joined a fully-funded three-month programme for young entrepreneurs in south eastern China. Mugandiri was one of 25 participants from developing countries who visited universities and factories in Fujian Province, and met several Chinese businesspeople. He returned home and decided to find business partners in China he became aware of the language barriers. Mugandiri searched online and came across the Confucius Institute (CI) at the University of Zimbabwe. He enrolled in evening classes in Mandarin for a nominal fee. Read more about Mugandiri at

Namisi Moses Apollo has become a celebrity in the villages of Luwero district in central Uganda, where he has been teaching the Chinese language at Everest College for two years. The 32-year-old teacher, who returned to Uganda in 2015 after studying in China for about seven years, has won the hearts and minds of local youths for his efforts to improve their future by teaching them Chinese. Namisi had previously taught Chinese at the Confucius Institute of Makerere University before relocating to the Everest College and introduced the Mandarin language to the rural youths, read more about Namisi at

Africa and Asia, including the MENA region, will house about 82% of the world population by 2100. The new silk road will boost the trade and the economy in the Asian, African and European corridor that will be joining these regions and the surrounding countries (;; thus creating a new global trade and integrated infrastructure for transport and mobility.

Even in many Asian countries the flip towards learning and mastering Chinese is becoming a new trend in their education systems, see for example Australia (

Delay Effects in Circular Economy and the Outdated World Economic Systems

Indeed, it doesn’t come with surprise that the world GDP ‘Gross Domestic Product’ has been accelerating since the great civilization of Ancient Egypt. In general, the world economic systems evolved in milleniums and generations on their own with weak and poor global coupling to the social and environmental pillars of sustainability. This has developed systematically on the expense of the health and wealth of planet Earth. Some very few exceptions do exist.

It would have been more beneficial if such developments involved parallel measures for better preservation and protection of life quality on Earth. Some of the gains in world GDP, at least in the past centuries, could have been used for mitigating the social and environmental conditions. Some few countries were successful to freely do so on their own especially those that were not, directly or indirectly involved in long-term conflicts and wars. It is therefore unfortunate that political structures and policies have generally supported, or being forced to support, the past negative trends. With some exceptions the global education systems, including higher education, have in practical terms either followed or served linear economies. This also involved poor attention and tuning of the underlying global machinery of R&D. Current education systems are becoming more and more isolated from the reality of our planet as we have it today and as it seems to be in the future. We know what the problems are, and where they are likely to be most severe, but we still don’t have enough tools to prepare future generations to act accordingly. We continue to replicate copies that empower linear economies with little effective spaces for creative, stimulative and innovative sustainable solutions.

Promotion and implementation of “circular economy” though the potential for beneficial socio-economic-environment outcome are facing major difficulties around the world. These difficulties bring with them cluster of wicked obstacles for generations to come what regards achieving the UN-SDGs. They also applies to the weak mitigation of climate and environment change policies which indeed impose severe constraints on natural resources, biodiversity and life quality in general. It is very clear from COVID-19 that we are still facing severe problems that clearly undermine our existence in particular the young generations what regards building sustainable and resilient economic systems. To cope with COVID-19 many countries were forced again to borrow from future economic resources that belong to the next generations. We will continue to do so for solving any emerging crises and new threats as we are still EITHER consuming OR deteriorating our common capital of natural resources.

The UN-SDGs are no more than a compilation of the shortcomings that resulted from the global economic systems whether on the right or left of the political spectra. Both capitalism and socialism, including the collapsed communism 1989, and anything in between or still on the extremes of both sides, failed to cope with what we are facing today. What we have today everywhere didn’t emerge from thin air or develop overnight. Indeed, it resulted from blind conflicts within and between political structures on the right and the left that contributed in the aggravation of the climate and environment threats that we are facing today.

As an example is the outdated definition of poverty ( that is still used in global economic and education systems “Poverty, is the state of not having enough material possessions or income or for a person’s basic needs”. How do we define basic needs in ICT ‘Information Communication Technology’, AI ‘Artificial Intelligence’ and ML ‘Machine Learning’ era? How do we define poverty in the era of the Anthropocene with continuous degradation of the life quality on earth? Or even from the UN-SDGs perspective, i.e. to have inclusive social, economic and environment elements that holds on all levels from individual, to community and up to society levels? The definition of absolute poverty is also outdated as it lacks the means to meet the basic needs of life quality other than the necessary personal needs, such as food, clothing and shelter. Isn’t clean air, clean water, clean environment, access to the internet, quality education, equal opportunity, gender, ……… etc. are basic necessities?

Will we continue to repeat previous mistakes? What do you suggest?

Sustainable Developments and Role of Water-Energy Systems in the Anthropocene

Our water-energy systems around the world have complex and comprehensive interactions within and between each other. Yet, the complexity is accelerating more and more as global water-energy resources are also dependent on in the ongoing changes in the climate and environment. More importantly, the growth in world population along the increasing needs for water, energy, food and natural resources as well as eco-system services add new dimensions to how and when we can achieve the goals of the UN-SDGs.

The WEBINAR conducted at Boston University throws some light on what, why and how we can advance our knowledge on water-energy-food-climate nexus.