Category: Forestry & Land-use

Though the increasing urbanization in many parts of the world, developments of rural regions in the developing countries and the conservation of forests and wildlife remain to be essential for achieving sustainable socio-economic developments. Mitigation of climate change and promotion of green- and eco-technologies, and agro-industries for food, feed, fibre and fuel production are very much dependent on forestry, agriculture and land-use activities which would require increasing investment and infra-structures especially in rural areas, e.g. in Africa, South America and Asia. However, this doesn’t necessary mean less increase in urbanization but rather increasing integration of rural areas with urbanization, e.g. roads, small industrial and agro-facilities, and community services. Such trends should, also, benefit from the accelerating use of wireless technology ICT, off-grid solar panels and the expansion of small-scale farming, trade and land-use activities. The vast areas of forestry, agriculture and land-use will further require adaptation to new conservation and water management technologies, e.g. surface and groundwater, and rainwater harvesting.

Editorial Board – Dr. Mahmoud Abdel-Hafiez (AGYA)

It is our pleasure to welcome Dr. Mahmoud Abdel-Hafiez in the Editorial Board of sustain-earth.com. We would also like to congratulate him for being elected the German co-president of AGYA academy in sciences and humanities for the academic year 2021-2022. Short summary about AGYA Academy with text is extracted from the home-page of AGYA (http://agya.info) is also given below.

Dr. Mahmoud Abdel-Hafiez is currently associate Professor (Docent in physics) at Department of Physics and Astronomy, Uppsala University, Sweden. He has specific interest in studying quantum materials with thermodynamic, magnetic, and transport experiments in high pressure and low temperatures. His collaboration with others allow him to use neutron, x-ray scattering and muSR spectroscopy to study the magnetic ground state. The aim is to grow high quality single crystals of the materials used in his studies. His current interests include SC, CDW, and the behavior of electrons in 2D and 1D-materials.

In 2018-2020 he acted as Research Associate, Physics Department, Harvard University, Cambridge, Massachusetts, USA. During 2015-2018 he was Assistant Professor, Institute for Physics, Goethe-University Frankfurt, Germany. In 2014-2016 he acted as Group Leader at Center for High Pressure Science and Technology (HPSTAR) Beijing/Shanghai, China. While in 2013-2014 he was
Postdoctoral Researcher at Université de Liège, Belgium (Nanostructured Materials Group) directly after he finished his PhD in 2012 at TU Dresden / IFW Dresden, Germany (Thermodynamics and Magnetism). He obtained his B.Sc. and M.Sc. in Solid State Physics, Fayoum University, Egypt. He has numerous publications in pioneer high-quality journals together with researchers from many other universities as given in his C.V..

Short Summary on AGYA Academy. The Arab-German Young Academy ‘AGYA’ has 23 countries with one mission in Sciences and Humanities for bringing together excellent Arab and German scholars to address common challenges and develop solutions through sustainable research cooperation. The member countries of the AGYA (based In Germany (Berlin-Brandenburg Academy of Sciences and Humanities ‘BBAW’) and In Academy of Scientific Research and Technology ‘ASRT’ in Egypt) are Algeria, Bahrain, Comoros, Djubouti, Egypt, Iraq, Jordan, Kuwait, Lebanon, Libya, Mauritania, Morocco, Oman, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen.

AGYA promotes early-career scholars (3–10 years after PhD) from its member countries in the Arab world and Germany. The academy implements joint interdisciplinary research projects and initiatives at the interface of science and society with a focus on education, innovation, and science policy. It has various Work Groups in education, heritage, water, energy, environment, sustainable developments, health and society as well as innovation

The AGYA is unique organisation, it is the first bilateral young academy worldwide founded in 2013 and carries out research cooperation on equal terms. The academy’s members and its alumni/alumnae are involved in very interesting and broad activities for building a community of trust with interregional competence networking to inspire a new kind of research practice. Working collaboratively beyond borders, members share a socio-scientific vision of equal partnership and research excellence to realize cutting-edge research projects. AGYA has a well-structured cooperation framework with diverse infrastructure that enables strong links between researchers from many disciplines in the context of Arab-German scientific collaboration. Strengthening trans-disciplinary Arab-German human interactions allows fostering innovation in research across the natural sciences, technical sciences, life sciences, social sciences, humanities, and arts. It is by far an inclusive programme for bringing science in its broad definition nearer to a diverse socio-cultural environment to engage young graduates and researchers in central sustainability issues.

The approaches of AGYA are based on fresh perspectives, the members and alumni/alumnae share an interdisciplinary approach to scientific enquiry, with the intention of seeking broad inter-disciplinary solutions to future societal challenges. By being motivated to conduct cross-borders and interdisciplinary research, they are socially committed as academic international leaders. In this context, AGYA offers an unprecedented and excellent opportunity that members from all kinds of disciplines, subjects, and research fields meet and develop their interdisciplinary projects. The complexity of today’s challenges and the ongoing transformation to sustainable and resilient societies necessitates input from different disciplines and cultures to deal with existing wicked and yet common existential threats.

Cross-cultural Arab-German landscape can provide researchers with the necessary stimulation to uncover how much Arab and German societies actually have in common. Scarcity of resources, like clean water, clean air, renewable energy and sustainable food are common future challenges that needs international collaboration. Arab and German societies share common experiences that emanated from modern needs for integrating global migrants into higher education and scientific discourse. In this context AGYA provides fertile landscape to cultivate cultural heritage using shared ancient cultural technologies such as storytelling. AGYA in this respect facilitates the emergence of fresh and pioneering Arab-German perspectives for strengthening new forms of North-South-South cooperation.

For ensuring inclusiveness through principles of self-governance AGYA members are independent and free to determine their own research topics and agenda. They do this by connecting and forming partnerships with fellow members. All members meet to discuss the academy’s affairs and agenda in bi-annual general assemblies, Steering Committee are bring elected annually by the members. Through its activities the AGYA participants develop outstanding intercultural understanding and build abilities in self-governance, self-organization, and self-expression in multi-cultural environment. Unlike other academic organizations, AGYA’s alumni/alumna act as ambassadors of this culture thus inspiring others across the Arab-German academic world.

Collaborative research across borders creates spaces of interaction between researchers and with policymakers and other stakeholders. Research cooperation cultivates long-lasting multilayered relationships for building an academic civil society with more potential for shared understanding to productively clarify and mediate outside of the political arena with evidence-based policy advice. This makes the AGYA academy a true cross-cultural think tank that benefit German and Arab societies.

The AGYA is a vehicle for empowering and capacity building to enable its members to obtain, improve, and retain the skills, knowledge and resources to advance in research and dissemination of science to the society. In this context, AGYA has outreach activities to attract young scholars at the pre-Ph.D. and Ph.D. levels with consideration inclusiveness in areas of research, academic life including gender balance and advance of women in the academia. Among other activities, AGYA conduct international exhibitions (e.g. ‘From Cinderella to Sindbad: German and Arab Timeless Tales in Abu Dhabi), annual conferences, symposia and hands-on training for Career-Development-Plans. These take place in all its member countries and across all disciplines including technical sciences, social sciences, natural sciences, life sciences, humanities and art.

For more information on AGYA, also why and how to join the Academy (e.g. eligibility, requirements and application) please visit https://agya.info

Credit: https://AGYA.INFO

Bhutan: First To Be Carbon Neutral But How and Why?

Kingdom of Bhutan – is the only single country in the world that isn’t only carbon-neutral but carbon-negative. It has replaced the generally and globally accepted concept of Gross Domestic Product ‘GDP’ by its own home-made concept Growth National Happiness ‘GNH’.

Bhutan (https://en.m.wikipedia.org/wiki/Bhutan) has moved quickly from being one of the most closed states on the planet to an open, more or less, ‘modern’ country. It has its own local traditions that are intertwined with their social and economic spheres as well as religion. It has proved to be on the correct path towards full sustainability as it has to large extent eradicated corruption. It has tightly and gradually linked their traditions and religion to achieve environmental safety, economic growth, social developments including maintaining its own cultural heritage.

There are several reasons that allowed Bhutan to move fast towards reaching the status of being, the first country on the planet, Carbon Negative nation. It has very small population, one million, living on limited piece of land with well preserved nature (https://www.alamy.com/stock-photo/bhutan-landscape.html) and biodiversity. It has implemented rules to regulate the protection of its land and to use eco-tourism to support its public services specially education and health. Modern technology arrived to Bhutan very late, by the end of the 20th century, yet it is moving slowly in the process of urbanisation with focus on own self-sufficiency of food and respect for nature. This is though being located between two major economies, i.e. China and India, with much growing technological changes. It has banned export of its natural resources and it is using hydroelectric power as main source of electricity. It has already banned the fossil-fuel to be used by its industries. Its economy is based on agriculture yet with environmentally friendly processes. It is also moving towards the use of electric vehicles. In 2030 the country will start to absorb much more (several times) carbon than it emits and it will also be free from the air-pollution.

Yes We Can – The African Great Green Wall.

Young people in Africa, with support of the African Union, and in cooperation with youth from around the world (including university students and practitioners that participated on their own initiatives) are determined to build prosperous and rewarding future. Also, to take actions to stop the climate crisis, to promote and implement the United Nations Sustainable Development Goals. While the challenges are huge and demanding, they are enormously motivated to work together. With simple but yet very effective approaches, starting with small plants, they aim to stop desertification that have been going on for millennium in the Great Sahara Desert of North Africa (https://en.m.wikipedia.org/wiki/Sahara). This part of the world is one of the most arid, hot and uninhibited regions of the world. It has the world’s highest officially recorded average daily high temperature of 47 °C or 116.6 °F in a remote desert town of Algeria called Bou Bernous at an elevation of 378 metres (1,240 ft) above sea level, and only Death Valley of California rivals it.

A report from the UN reveals that drylands, including vast areas of desert, cover 41.3% of Earth’s total land area. What if large amounts of this land could be converted into fertile ground capable of producing crops? Also using their hidden natural vast resources sustainably. This is a particularly important question for many counties in the world which is now receiving serious and huge attention because of the increasing population, declining resources and also the diverse existential threats facing Earth. As we know the Arabian Peninsula including Kuwait 🇰🇼, Oman 🇴🇲 , Qatar 🇶🇦 , Saudi Arabia 🇸🇦 , the United Arab Emirates 🇦🇪 (UAE) has turned their desert to living and prosperous landscape. So, this can be also done for some of the great desert land of the Sahara that is separating Africa in two very distinctive and separated regions. China🇨🇳also turned, and is still turning, large areas of desert to green landscape (https://lnkd.in/epYPMChX). Technology isn’t only about urbanization and smart cities. Indeed, much can be done in rural, desert, mountain and coastal marine areas as modern technologies have unlimited possible solutions. Also, the Information Communication Technology ‘ICT’ and Internet of Things ‘IoT’ can facilitate and solve much of the previous difficulties. We need to think Out-of-the-Box and tune modern technology to meet needs other than cities and heavily urbanized areas. Science and Technology need to expand their horizons to wider global applications.

For ten years young Africans have been going to the desert to plant trees in their holidays. The communities of the Sahel-Sahara States are turning many acres of the desert to new green landscape just in several days. As is called ‘The Great Green Wall’ is an African-led movement (https://youtu.be/cphSne_HiPA) with ambition to grow an 8,000km natural wonder of the world across the entire width of Africa. A decade in and roughly 15% underway, the initiative is already bringing life back to Africa’s degraded landscapes at an unprecedented scale, providing food security, jobs and a reason to stay for the millions who live along its path. This will also help coping with the climate-crisis. Indeed, North Africa has enormous resources for producing renewable solar energies, and other solar-based technologies yet to be developed, as the world is turning its back to fossil energy resources for coping with the climate crisis and other associated threats.

Indeed, the movement of The Great Green Wall ‘GGW’ has diverse benefits not only for the most poorest Africans but also for Africa, the MENA region and the rest of the world in general (https://www.greatgreenwall.org/about-great-green-wall). It will:

(1) Improving millions of lives; (2) A global symbol for humanity overcoming biggest threat of rapidly degrading environment; (3) A vital contribution to the UN Sustainable Development Goals ‘SDGs’; (4) Growing a new world wonder across the entire width of Africa; (5) Growing fertile land, one of humanity’s most precious natural assets; (6) Growing a wall of hope against abject poverty; (7) Growing food security, for the millions that go hungry every day; (8) Growing health and wellbeing for the world’s poorest communities; (9) Growing improved water security, so women and girls don’t have to spend hours everyday fetching water; (10) Growing gender equity, empowering women with new opportunities; (12) Growing sustainable energy, powering communities towards a brighter future; (13) Growing green jobs, giving real incomes to families across the Sahel; (14) Growing economic opportunities to boost small business and commercial enterprise; (15) Growing a reason to stay to help break the cycle of migration; (16) Growing sustainable consumption pattern, to protect the natural capital of the Sahel; (17) Growing resilience to climate change in a region where temperatures are rising faster than anywhere else on Earth; (18) Growing a symbol of peace in countries where conflict continues to displace communities; (19) Growing strategic partnerships to accelerate rural development across Africa; (20) Growing a symbol of interfaith harmony across Africa. These are enormous incentives for the world to support the ongoing work of the GGW, it is now we can do it as we are running out of time.

Throughout history, humans have continuously moved and expanded all over planet Earth and turned vast unhibited areas to new prosperous landscape. Yet much of the natural resources on planet earth are kept unused or abused for some reason or another. What we don’t use properly we loose definitely and this was the case of the Great Desert of North Africa, the Sahara. It is now time to invest in Africa as Africa in the past supported Europe 🇪🇺and the USA 🇺🇸 , i.e. in the era of colonialism and slavery. With the birth of the UN after WWII, Paris agreement and the ratification of the UN-SDGs by the global community we are in a grand revolution to shape the world towards a new resilient and sustainable future.

From https://www.nationalgeographic.org/article/great-green-wall/

Role of Physics, Chemistry and Science in the Golden Revolution of Sustainability.

It has never been a time in human history where all needed Goals/Targets, Knowledge, Technologies, Human Resources and Communication Tools were known, available and accessible to perform collective and global revolution that allows bringing an inclusive sustainability right in our home, Planet Earth. This said, it has never either been so critical, urgent and imperative in all human history to put all our thoughts, efforts and resources together to save Planet Earth as we have it today. Planet Earth is facing enormous existential threats because of huge pile-up of degradation in climate, environment, biodiversity and the ‘socio-economic-environment’ qualities of our life.

The journey towards ‘sustainability’ has been very long with many and continuous ups and downs. We have only understood it late and agreed on it even later. So far we have succeeded to acknowledge it and to define what sustainability is, why it is needed and how to implement and achieve it on full scale and everywhere. It is not about if we can but is rather about when and more importantly how we could be able to maintain what we so far know, put them in practical actions to build robust sustainable and resilient life. Also, with all possible means we need it to be affordable and inclusive. So, we are in the most critical part of the equation with many imperative requirements to achieve what we defined as Goals/Targets. We will expand on these issues systematically in order to connect the dots of our Ability to Sustain Life, i.e. build SustainAbility.

Goals/Targets to achieve sustainability, or to at least to achieve resilience, are already summarised in the UN-SDGs that are now ratified by all countries. It remains to have a true political well by all the member states of the United Nations and more importantly to have serious, immediate and coordinate global collective actions to promote, implement, scale-up and scale-out the UN- seventeen goals and the associated targets (https://www.un.org/sustainabledevelopment/). The date to achieve all these ambitious goals by 2030 is not likely to be met but at least we should be on the proper roads and the appropriate tracks to do so.

Technologies that are science-based and sustainability validated need to be resilient, accessible, affordable and also adaptive for use anywhere. We have a Science-Technology nexus where science promotes technology and technology promotes science and visa versa. The cycle goes on and on where science and technology become improved and refined in a continuous non-ending process as our dynamic needs never ends but rather expand and accelerate. Among several examples on the connection between science and technology to achieve sustainable solution is how we arrived at the central role of electricity in our life (https://www.mckinsey.com/business-functions/sustainability/our-insights/sustainability-blog/these-9-technological-innovations-will-shape-the-sustainability-agenda-in-2019). In this context, tight and active participation of scientific and technical communities, i.e. universities, R&D institutions and industries, are essential both from the private and public sectors. This involves all the vertical and horizontal multilayered connections specially in education and the learning process. In the past century several innovations and inventions particularly in science, technology and literature including physics, chemistry, mathematics, biology, earth sciences and medicine, engineering, agricultural and human sciences just to name some, have widened and deepened our understanding of global economy, politics and also promoted our efforts to achieve peace, security, safety and equity but the later ones. Still more and more needs to be done to counteract the degradation of life quality on Earth.

Knowledge to promote and implement these goals already exist and indeed anyone of us can consult Professor Google to seek information, to learn and to know about ‘what, where, why and how’ to participate in the ongoing sustainability revolution. Yet, we need to work together with responsibility, transparency and accountability across many knowledge domains (https://www.eolss.net/eolss-knowledge-sustainable-development.aspx) and not only in limited and narrow isolated disciplines based on fragmented and individual interests (http://www.developmentresearch.eu/?p=905). It is mandatory to increase our individual and collective participation with actions to work together (https://www.staff.lu.se/article/how-do-we-generate-knowledge-about-sustainable-development) with building teams, collecting and compiling appropriate knowledge as well as sharing our understanding and efforts by all available and accessible communication tools including the IoT ‘Internet of Things’.

Human Resources in this context are the bases to maximise our Ability to Sustain life on Earth by building resilient Human Resources (https://fardapaper.ir/mohavaha/uploads/2018/11/Fardapaper-On-the-importance-of-sustainable-human-resource-management-for-the-adoption-of-sustainable-development-goals.pdf). This has been evident through out the human history and during all the past transitions from the hunter-gatherer era to the agriculture revolution and all the way through the various stages of the industrial revolutions up to the post information revolution. We have now a collective human library that describes the collective human intelligence, not necessarily the human intellect. That is more or less accessible and affordable ‘Google’ to use and guide us for a better and prosperous future specially what regards the management of human resources (https://onlinelibrary.wiley.com/doi/full/10.1002/sd.2166). However, Google in itself just gives access to more or less all the known knowledge in the form of a ‘Black Box’ of ‘raw knowledge’. This access to knowledge needs to be sorted, refined and tuned for correct and proper use, also to improve through R&D for the sake of improving the global human resource capital. For developing critical skills for example Google has training and performance management programmes for human resources (http://panmore.com/google-hrm-training-performance-management). In this context, there must be a threshold of knowledge to get maximum benefit from Google which we can get through education and/or training, also through experiments including trial and error. By the end of the day, education and R&D are main vehicles for creating sustainable human resources empowered by the necessary knowledge.

Communication Tools are becoming increasingly available and affordable through ICT technologies ‘Information Communication Technologies’ that give us access to multiple services, businesses, education, trade, health and entertainment and are continuously shaping our daily life including for examples the diverse flora of social-media tools and instruments, e.g. Facebook, Instagram, Pinterest, YouTube, WhatsApp, Google Duo, private and public TV programs and….. many others. ICTs can help accelerate progress towards every single one of the 17 UN-SDGs. For example, helping to build resilient infrastructure, promoting inclusive and sustainable industrialization and fostering innovation and services that allow countries to participate in digital economy and to increase their well-being and competitiveness (https://news.itu.int/icts-united-nations-sustainable-development-goals/#). These tools and the IoT ‘Internet of Things’ in general allowed to boost various types of human-to-human, human-to-machine and machine-to-machine interactions and eventually evolved more and more to sophisticated automation, ML ‘machine-learning’ and AI ‘Artificial Intelligence’ technologies. ICTs are already empowering billions of individuals around the world by improving the access to education and healthcare, and many other services such as mobile banking, e-government and social media, among others. However, there are still considerable needs to promote/improve the global interconnectedness because of its great potential to accelerate human progress, to bridge the digital divide and to develop knowledge societies, as does scientific and technological innovation across e.g. areas as diverse as medicine and energy (https://sustainabledevelopment.un.org/index.php?page=view&type=20000&nr=579&menu=2993)

The desire to build sustainable societies is not new and it has always existed but we didn’t have access to enough knowledge, instruments and resources. These are among essential requirements that were highly lacking in integrated and coordinated manner throughout the human history. This has indeed caused serious confusion about what life on Earth is and how we can work collectively to have wealthy and healthy life on Earth. However, We give here two major examples from chemistry and physics that were indispensable for connecting science and technology on the one hand and for putting them for the service of society on the other. These two examples show that developing robust sustainable and resilient technologies do need solving, compiling and coordinating complex web of known and unknown details through huge and diverse machinery of R&D. Also, to recognize the enormous needs for at least interdisciplinary, multi-disciplinary work, if not full transdisciplinary interactions within and between, for example, physics and chemistry on the one hand, and all other scientific disciplines on the other hand. The feedbacks from physics and chemistry as well as from other sciences, e.g. earth, environment, life and human sciences, helped the evolution of sustainable science and technology specially in terms of understanding the life conditions and boundaries on earth and also to provide better services for humanity.

This said, to see the evolution in physics and chemistry in terms of sustainable developments we will put them in historical perspective what regards the addressed issues. In chemistry the periodic table of elements will be explained by life demonstrations (https://youtu.be/kqe9tEcZkno). This is to increase the added value of pedagogy in education. Indeed, all elements of the periodic table have find their way in our daily life in away or another that made our life easier but also created multiple threats through the increasing waste and pollution. We should keep in mind that we need to consider the Life Cycle ‘LC’ of all the elements from cardle to grave (https://thebusinessprofessor.com/en_US/mgmt-operations/cradle-to-grave-definition). It is not only about processing, producing, using and consuming the elements of the periodic table but it is also about what are the consequences and impacts of the waste and pollution associated with all the elements, and their compounds, in the main spheres of the earth’s system (atmosphere, hydrosphere, lithosphere, biosphere and cryosphere. Many advances in chemistry and physics and other sciences were made possible through our understanding of the chemistry and physics (also in other sciences) of the all the elements of the periodic table, and their derivative minerals and compounds that resulted from natural processes in the Earth’s system, including reactions and interactions both under laboratory conditions and more importantly in the Earth’s system.

What concerns physics we will give a historical perspective of what electricity is and how electrons as moving charges carrying energies can produce also electromagnetic interactions and waves that carry information as well. The property of electrons to interact with energy, i.e. absorb energy, carry energy and emit energy, transform and transport energy as well as get annihilated and disappear all together have found enormous uses and applications, e.g. to produce and transport electricity to be used, stored and also to transmit, mediate and communicate information. Electrons are ‘energy and information’ messengers and you can imagine what we have and can achieved by understanding these mysterious particles that we still learn more and more about them. Indeed, electrons are the very bases of our today’s and tomorrow’s modern reality (https://youtu.be/Gtp51eZkwoI) every-day life and services.

In this context, chemistry and physics as well as mathematics have jointly allowed, to major extent, understanding the details and very secrets of the electronic structures of all the elements of the periodic table. Thereby contributed in building up an enormous and indispensable database of knowledge and models that allowed to convert light to electricity ‘solar panels’ and to store electricity in well designed, safe, efficient and effective batteries (also with help of ICT), as is the case of Lithium-Ion Batteries ‘LIB’. Yet, more is expected to come. Also, they allowed us to enjoy all modern ICTs tools such as computers, cell phones, tablets, ….. and an enormous flora of sensors and actuators that are now being used in automation and robots. These have opened many gates for shaping new industrial revolutions, i.e. AI ‘Artificial Intelligence’ and ML ‘Machine Learning’. Not to mention the household machines and tools as well as the technical needs of our industries are all an outcome of the magic services of electrons.

Enjoy the two well-selected videos that illustrate to the science behind the chemistry of the periodic table and the physics of electricity.

The growing awareness of accelerated use (mining, processing and production) of several elements of the periodic table and the associated threats from pollution/waste and the risks to run out of reserves of critical elements promoted mote integration of sciences. The concept of Life Cycle Analyses ‘LCA’, the rise of Circular Economy ‘CE’ and the needs to integrate Environment Social Governance in global businesses are some examples of the necessity to consider transdisciplinary approaches to integrate sciences for promoting and achieving the UN-SDGs.

Source Cheri Koones, Forbes.com “creating-energy-independence-with-solar-panels–storage-battery-systems-in-the-home”

🛑 Fridays for Future – Global Climate Demonstrations.

Employees at Uppsala University UU, and the Swedish University of Agricultural Sciences SLU, joining the Global Climate Demonstration today Friday 24 September at Forumtorget in Uppsala around 15.30.

This is to show the leadership of UU and SLU their concern about the climate crisis, and to demand immediate action against the climate change. Universities need to show in practical terms and measures that they takes science seriously NOW, and they need to lead not only by examples but by actions as well.

https://stayhappening.com/e/global-klimatstrejk-uprootthesystem-E2ISTVWDWE0

COVID-19: Crisis and Challenges in Higher Education. The New Imperatives and Opportunities.

COVID-19 has changed the reality of life for many of us and will continue to do so for sometime. The first sectors that suffered from the COVID-19 pandemic were health services, the tourism and hospitality sectors along with other labor, trade and industry sectors.

Higher education, and education in general, has also been impacted by COVID-19 in various ways and are facing a global crisis that may take relatively longer time to recover depending of level of preparedness, availability of resources, existing infrastructures and degree of resilience. However, the crisis in education and higher education didn’t come as a surprise as it has been an ever growing cracking in higher education and global education systems in general, since the birth of ICT and IOT, and even before that. Indeed, many education systems around the world are either inherited or imported which have caused ever increasing gaps between what students get from their education and what is really needed in the market specially in the developing countries. Another short coming in higher education is the strong rooted tradition in out-dated disciplinary-based education systems where graduates have serious difficulties to meet today’s complexity in the labor market. The ongoing crisis is of global dimension and has introduced remarkable effects in R&D and also the associated educational infra-structures.

COVID-19 has changed our world dramatically and as we have in business and trade if you’re a brick-and-mortar retailer, an online store is no longer a nice-to-have; it’s essentially a must-have (https://www.bigcommerce.com/articles/offline-to-online/brick-and-mortar-retailers/). It is an inductive process that will be propagated very fast in all other sectors with far many new imperatives. All people simply need to be able to find you and communicate with you online. The COVID-19 has put new imperatives on sharp display when many brick-and-mortar stores were forced to temporarily shut their doors. Having an online store was the only way forward and it is likely that our world will change, at least partially in this direction as was the case with the old postage-system, to online banking, on-line booking of hotels, food, travels and all other ICT-services. Indeed, education will follow the same trend in a way or another. Though, the brick and mortar framework will still be the mainstay of our education system, for sometime, because of its undeniable advantages to learning in a shared physical space, online education is progressively and continuously gaining popularity. Still there are obstacles that need to be solved and will be solved. It is not a matter any longer of IF but rather WHEN and when was already yesterday. The autonomy and flexibility of e-learning make them extremely popular with working professionals and students as the entire e-learning industry is changing rapidly. This is an essential part of the ongoing Information Revolution.

Though there can be challenges to successfully tune and transform higher education systems, and the whole education landscape in general, from Brick & Mortar to Click & Mortar (https://digitallearning.eletsonline.com/2019/12/education-landscape-from-brick-mortar-to-click-mortar/) there are major long-term benefits and opportunities for generations to come. However, as we have learned from history higher education, and education systems, by being part of our social landscape are very much dependent on our lifestyle. Our life as we have it today and as it would be in the future is very much impacted by moving away from Brick & Mortar to Click and Mortar as the digital technologies are definitely here to stay and we have to adapt to this imperative reality. Sustain-earth.com will expand on many issues related to future threats, challenges and opportunities what regards higher education and and education in general.

Sustainable Developments and Role of Water-Energy Systems in the Anthropocene

Our water-energy systems around the world have complex and comprehensive interactions within and between each other. Yet, the complexity is accelerating more and more as global water-energy resources are also dependent on in the ongoing changes in the climate and environment. More importantly, the growth in world population along the increasing needs for water, energy, food and natural resources as well as eco-system services add new dimensions to how and when we can achieve the goals of the UN-SDGs.

The WEBINAR https://youtu.be/G3D0X96IuqY conducted at Boston University throws some light on what, why and how we can advance our knowledge on water-energy-food-climate nexus.

Part II of the ‘Sustainability in Science and Technology’ – The Human Performance.

The performance of humans is driven by diverse needs for food and security to overcome the challenges for decent live on Earth. 

This is an introduction to Part Two of the WEBINARS on “Sustainability in Science and Technology” – The Performance of humans’, hosted by sustain-earth.com.

Africa is the origin of homo sapiens and the renewables helped their evolution during millions of years and their migration out of Africa 70 000 years ago.

During the hunting gatherer era humans started to master artefacts and simple tools, also to build small communities and settlements. They domesticated animals, plants and learned to cultivate land and build shelters for their living.

The agricultural era that started 10 000 years ago culminated in an outstanding ancient Egyptian civilisation that lasted 3000 years. During this era people used water to promote agriculture, farming and to produce food. These achievements were made possible by taking advantages of renewable resources only, the sun (heat and light), water from the Nile and limited use of natural resources.

The mechanisation of agriculture in the 18th century during the first industrial revolution triggered increasing use of artificial pesticides and fertilisers. However, the limited water resources on Earth caused new needs for diversification of water production and management in order to have clean, affordable and accessible water for the growing population and the increasing urbanisation. The first industrial revolution involved various manufacturing processes supported by water and steam power.

The second industrial revolution in Britain was based on increasing electrification and use of combustion engines, rapid standardisation and industrialisation of many sectors in the 19th and 20th centuries. The widespread developments of the first and second industrial revolutions created huge pollution and waste in the atmosphere, the hydrosphere and the biosphere that continued and continued until now. New but limited renewable technologies, however, with zero net emission of green house gases started to appear by the end of the 20th century. This was due to the fear that fossil fuels are limited and have negative impacts on life. These developments were possible by more affordable access to renewable energies and the expanding use of alternating and direct current motors. Indeed, there are still several environmental challenges for scaling-up and scaling-out the renewables. Among these are the storage of renewables and integrating them in well-established grids. However, renewables and batteries require needs for new materials and further expansion of mining and processing that are dependent on heavy consumption of water and energy.

The third industrial revolution of digitalisation started by the end of the 20th century and opened new possibilities for increasing efficiencies and volumes of communication not only between humans but also between humans and machines, and between machines and machines as well.

The Information-Communication-Technologies and the Internet of Things will allow extensive and intensive expansion of Science and Technology with new gates for innovation worldwide on all levels and in many sectors. We have now many examples around the world which demonstrate that the boundaries between science fiction and technological realities are vanishing very very fast. We are, now, in urgent needs to proceed with the 4th industrial revolution and to continue with Artificial Intelligence and Machine Learning but with careful attention to the demands of renewables, preservation and protection of life.

Pre-announcement for Forthcoming WEBINARS 2021: Sustainability in Science and Technology.

The WEBINARS on Sustainability in Science and Technology will be hosted by sustain-earth.com. and will appear in 2021. They are coordinated by Professor em Farid El-Daoushy (Uppsala University, Sweden) and will be given by many professionals and professors from around the world. It is based on trans-disciplinary and trans-sectoral approaches to explain and detail several patio-temporal yet complex, wicked and interactive problems that piled-up over very long periods of time and caused the evolution of a new geologic era, i.e. the so-called anthropocene.

In part one, the natural drivers of life on planet earth, in the atmosphere, hydrosphere, biosphere and lithosphere, will be explained to give the necessary bases for understanding the boundary conditions of the natural climate and environment systems of the Earth. In part two the life-styles of humans ‘homo sapiens’ on planet since their evolution on Earth, and migration out of Africa 70 000 years ago, i.e. during different transitions and changes from the hanter gatherer era until now will be followed. Part three will give the impacts of the combined spatio-temporal interactions between human life and the planets’ own drivers on the global economic systems. Further part three will involve issues related to growth economy versus circular economy. In part four analysis of the performance of sustainability with reference to the first three parts will be done. In this context, resilience in human knowledge versus science, technology and innovation will be examined. These four parts together will give background information on ‘what, why and how’ what regards sustainability can be put together in a resilient framework to scale-up and scale-out science, technology and innovation to meet the UN-SDGs in order to achieve prosperity on planet Earth.

In summary the forthcoming WEBINARS can be described as follows:

Part One: The performance of planet Earth.

Part Two: The performance of humans ‘Homo Sapiens’.

Part Three: The performance of world economic systems with consideration to growth economy versus circular economy.

Part Four: The performance of sustainability. Resilience in knowledge versus science and technology.

Highly Recommended – All Our Food Is Nature Made. However ‘AI’ and ‘ML’ can Improve Food Industries.

Photosynthesis is the main reaction behind all life forms on planet Earth, it triggers life processes in global eco-systems on land and in aquatic systems (ocean, lakes and rivers). For photosynthesis to do its job and produce all forms of healthy and nutritious food that makes up global biodiversity, including us humans the ‘Homo Sapiens’ (https://en.m.wikipedia.org/wiki/Human) water is needed. Indeed, even if we say water is the origin of life, it isn’t totally 💯 correct as we still need carbon dioxide in trace amounts. An important question is high trace is trace? Even though we have water and carbon dioxide at the right concentration, we aren’t done yet, as we also need solar energy ‘light photons’ to initiate this magic reaction and the very secret of nature that evolved four billions of years ago, the ‘photosynthesis’.

There are many other imperatives that are needed for the natural photosynthesis to do its job properly and to keep it in tact with all the functioning and metabolism processes of life forms on earth apart from the reactants, i.e. water, carbon dioxide and the photon from the sun. We need healthy atmosphere and healthy hydrosphere, these underlying spheres of life are currently undergoing continuous degradation by us humans. This indeed imposes great threat for the proper functioning and metabolism of the very basic mechanism that fuels the life on Earth, i.e. the photosynthesis.

The atmosphere is important for agricultural sectors and farming, apart from supporting the forest eco-systems. Naturally healthy and fertile soils, are also needed, that have the right mixture of nutrients and free from toxic chemical remains and heavy metals. Also, soils need to have good water holding capacity which is regulated by the organic content. For the atmosphere to be healthy environment for the photosynthesis to take place on land, we must have suitable atmospheric composition, e.g. carbon dioxide concentration that allows having appropriate temperature, in addition to being a necessary component for photosynthesis. Also, not to have toxic compounds in the atmosphere such as nitrogen oxides that through photo-reactions can produce boundary-layer ozone that has negative impacts on growth of vegetation, in particular forests.

What regards aquatic systems we still need suitable temperature (which is dependent also on the heat-balance in the atmosphere) in water bodies, suitable pH as acidification from acidic nitrogen- and sulphur-oxides destroys the living-habitats of fish such the corals in the ocean, also it destroys the food-web and kills fish as in fresh-water lakes and rivers; suitable amount and levels of oxygen for breathing is also imperative in aquatic systems. Naturally, we need also other trace nutrients in particular phosphorus, nitrogen and potassium (applies also for healthy vegetation on land and agricultural production). However, excess amount of nutrients cause eutrophication as the water bodies become overly enriched with minerals and nutrients which induce excessive growth of algae. This results in oxygen depletion in the water body after the bacterial degradation of the algae. As an example is the so-called ‘algal bloom’ or great increase of phytoplankton levels. Eutrophication is often induced by the discharge of nitrate or phosphate-compounds, fertilisers or sewage into aquatic systems.

We humans so far failed to imitate nature, i.e. to do what is known as ‘Artificial photosynthesis’ which still science fiction. Would we ever have Artificial Intelligence ‘AI’ to cultivate our earth, produce our food and create an Artificial Biodiversity? ‘AI’ can create robots and machines that imitate us humans in many ways through collecting the patterns of our behaviour. Robots can’t run the life on our planet itself but they can be better version of humans through Machine Learning ‘ML’ and thereby replace humans to do many many jobs in food industries, and also many other industries.

The implementation of AI and ML in food manufacturing and restaurant businesses is already moving our industry to a new level of performance, enabling fewer human errors, less waste of abundant products, less infections. They also allow lowering costs for storage, delivery and transportation. They can create happier customers through timely and quicker service. Even they can allow voice searching, more personalised and effective orders. Robotics for big factories and restaurant businesses will occupy its niche very soon and will bringing more benefits in the long run. Both AI and ML benefit from the enormous flora of sensors, actuators in addition to digital coding and programming.

For more details on these issues see: https://www.google.se/amp/s/spd.group/machine-learning/machine-learning-and-ai-in-food-industry/amp/.

Being able to read all the article we invite you to follow us and subscribe to sustain-earth.com. Meanwhile enjoy these drinks: https://www.youtube.com/watch?v=DT53K9d0vUU

Introduction – Part One: The Three Main Drivers of Life on Planet Earth “Energy, Water and Natural Resources”.

Introduction to the forthcoming WEBINARS, hosted by sustain-earth.com, on “Sustainability in Science, Technology and Innovation ’SISTI’ of Water, Energy and Natural Resources”. Part One of the introduction – The three main drivers of life on Earth: “Energy, Water and Natural Resources WENR”. These drivers, by being dependent on the main underlying and interactive sphere of the Earth System (atmosphere, hydrosphere, biosphere and lithosphere) are decisive for the performance and quality of both the life on planet Earth and the life of humans.

These three drivers ‘WENR’ have, so far, sustained all life forms on planet earth. Energy from the sun triggers photosynthesis where water in the HYDROSPHERE together with carbon dioxide in ATMOSPHERE have been the bases of all life in the BIOSPHERE both on land and in aquatic systems. Minor amounts of earth’s mineral resources in the upper LITHOSPHERE are also used as nutrients in the evolution of biodiversity and associated eco-services we benefit from as well as the production of our food. Homo Sapiens are not only part of the global biodiversity but they are becoming the main actor shaping it. Homo Sapiens extended the production. use and consumption of energy, water and the natural resources in the atmosphere (where oxygen is also crucial for life), hydrosphere, biosphere and lithosphere (including fossil minerals) for their living. The extensive and accelerating use of these drivers has surpassed the natural capacities and boundaries of planet earth to sustain all its life forms.

These drivers are imperative to achieve sustainable prosperity through integrated and resilient economic, environmental and social synergies. They involve trans-disciplinary and trans-sectorial (nexus) interactions in the socio-environment-economic fabrics that are shaping the future our planet including all societies around the world. Incorporating Environment-Social-Governace ‘ESG’ is fundamental for healthy and wealthy economies around the world.

To join, follow and get all the updates about our WEBINARS, directly to your e-mail, subscribe @sustain-earth.com. We have also created YouTube channel to support our activities, subscribe and join us.

Is Urbanization Done Right – COVID-19 and Greening of Cities

In the past decades we have observed an accelerating urbanization around the world where many old cities expanded enormously. Leaving little spaces for the citizens to move freely, to breath fresh-air, to exercise in natural environments and even be exposed to the sun. In many cities there are no affordable and easy access to parks, forests and green areas. Even more serious new cities in many parts of the world are built intentionally with increasing densification where living areas are designed to meet the needs of working adults, transport systems and cars as if recreation and children don’t exist.

All of us have definitely experienced the considerable degradation in the life-quality of our modern cities. They became parts of complex industrial production sites and we became part of complex machinery systems. Even with the invent and use of ICT we still over crowded in small areas, i.e. to be as productive as possible. In the early days of the ICT is was believed that people can be more flexible and resilient and not always forced to be in working places. However, business-as-usual became part of our life-style as if ICT doesn’t exist.

COVID-19 has drawn our attention to how urbanization and modern life-style brought with several negative impacts to life-quality. In many cities and urban areas around the world it is even hard to apply ‘physical distancing’ as there are no spaces to do so. Also, ‘stay at home’ isn’t a suitable practice as household may have many persons living in the same appartements and houses. Public transport systems, schools and public services can still be very crowded. Even the use of masks are not standard in many places or even not recommended or recognized as being a safe option. One can ask what options are left other than transmitting infections.

A city is more than its buildings and more than just housing. Modern densification is often about constructing as much housing as possible, as quickly as possible. Of course, considerations are great for housing but in the rush to build quickly it is important to slow down and ask ourselves: What kind of environments and life-style are we creating? Why and for whom are we building? How can we create cities and living environments that are sustainable, resilient and comfortable for everyone? Are our urban spaces contributing in a good built environment for pleasant life?

The Swedish National Board of Housing, Building and Planning has produced a
document in response to public debate on the densification of cities and communities, and to provide inspiration and guidance regarding ways to supplement the existing environment. Densification is not only about housing, it is about good built environment and life-quality for the people who live, work and spend time in the city. This publication gives views and arguments concerning some of the challenges and opportunities of densification. It also has interviews conducted with a few people about how they approach the challenges that exist. For example: how people’s needs for sunlight and daylight can be satisfied, how disturbing sounds in a dense city can be handled, how vegetation can be used as a resource, how room for public services can be created, and how a densification strategy for the entire city might be developed. It highlights a number of examples of municipal densification projects, all of which have added value over and above new housing. Mirja Ranesköld, planning architect, was the project leader and Elin Normann Bjarsell, landscape architect, was a member of the project team. Other coworkers contributed with their views and suggestions during the course of the project. The interviews were conducted by Elisabeth Klingberg at PratMinus (https://www.boverket.se/globalassets/publikationer/dokument/2017/urban-density-done-right.pdf).

Here some example of successful planning in the city of Gothenburg, Sweden, where I spent marvelous time in its ’Slottsskogens’ (https://www.goteborg.com/en/slottsskogen/) with an animal park, one of the oldest in Sweden. Just to demonstrate the old good times.

2020 – 24 Hours of Daily Reality Taking Place on Earth and Countdown to Uncertain Future

Interesting and scary reading that describes the daily reality around the world as experienced during 2020. What is going on planet Earth and the impacts of our irresponsible use of the global natural resources, in particular energy resources (by industry, transport, building and others), is based on scientific data and statistics specially what regards the atmospheric pollution. Among such impacts is the accelerating increase in the earth’s surface temperature (1880-2019).

What is happening in the atmosphere is triggering a global ‘Domino Effect’ with severe impacts on all other key spheres on Planet Earth. In particular the hydrosphere, the biosphere and ecosphere with tectonic threats on our living landscape (both rural and urban) and on daily basis. Global warming is also a medical emergency in times where COVID-19 pandemic makes the life more severe for many of us. The can be. connections between global warming and the COVID-19 pandemic. What is more serious is the scientific and technological advances, for many reasons, would not protect us against the consequences of global warming and will not bring back the decline in natural resources including loss of biodiversity. What is done is done and can’t be redone. As an example the CRISPR/Cas9 genetic scissor is unlikely to solve diseases caused by air and water pollution, also the mitigate the loss in biodiversity and tackle degradation in life-quality of atmosphere, bio and eco-sphere.

https://drive.google.com/file/d/1Gus8YH7ROjn-twSwt7K_Yxk6MuCNquII/view?usp=drivesdk

Sir David Attenborough and BBC for the Nobel Prize in Peace

The Nobel Prize for Peace (https://www.nobelprize.org/prizes/lists/all-nobel-peace-prizes/) has been awarded 100 times to 134 Nobel Laureates between 1901 and 2019, 107 individuals and 27 organizations. Among the International organizaions: Red Cross that got the Prize three times (in 1917, 1944 and 1963), the United Nations High Commissioner for Refugees got it two times (in 1954 and 1981), the Intergovernmental Panel on Climate Change (IPCC) and Albert Arnold (Al) Gore Jr. (2007), International Atomic Energy Agency (IAEA) and Mohamed ElBatadei (2005). These are some examples, in the same manner, we can argue that BBC and Sir David Attenborough would also be excellent candidates that deserve the Nobel Prize for Peace.

The world was just waiting for this incredible event of Sir David Attenborough to join the Instagram. It is just to use Instagram as amplifier for lifting-up biodiversity as an important part of ‘Life on Our Planet’. In just few days his Intagram Account went viral (https://instagram.com/davidattenborough?igshid=11ay0osmkukkp) with millions of followers and more to come. It is as he has an important message to us. The power of social media can hardly be ignored anymore even by highly educated professionals and politicians. What is more important is the content of social media channels that keep improving as more and more are becoming dependent on them and critical voices continue to add new dimensions as ‘survival of the fit’ is becoming an evolution and the norm for progress on the Internet. With the rise of the Internet (https://en.m.wikipedia.org/wiki/Internet) and the boom 🤯 of social media (https://en.m.wikipedia.org/wiki/Social_media) it is crucial to underline that quality of the content is being recognised more and more by the users. For a great portion of us, that can’t afford regular schooling and/or the expensive higher education, the social media channels are becoming an important source, if not the only source, of knowledge. Classical, conventional and international broadcasting channels (https://en.m.wikipedia.org/wiki/International_broadcasting) aren’t the only standard source of information and knowledge for many of us as they used to be. Though these trends, the global education systems, including higher education, are still closed systems as they don’t necessarily serve, i.e. the needs, the majority of the world population but rather an elite minority, as in football and other sports. Education, knowledge and knowledge transfer are imperative also as tools for public awareness, to share the responsibility, and not necessarily as a passport to the labor market that still support growth/linear economy. Universities and higher education institutes still lack efficient tools to reach out to the normal citizens, mediate knowledge and come near the society through tight engagement and active interactions. This is also the case for public education funded by taxes. Though the extreme importance of education institutes, in particular higher education, they still use ‘business-as-usual’ strategies without enough outreach policies to mediate and advocate knowledge to the public for protection and preservation of our common natural resources. This is the third duty of the universities and not only to perform pure ‘Research and Education’ that still can’t cope to solve existential problems as climate and environment changes, and the collapse in biodiversity, also to offer the necessary services to the citizens in major health disasters and pandemics as COVID-19. This is partly because universities and higher education continue to fail in creating partnership for goals neither with the citizens nor with the politicians as these are also part of their responsibilities, i.e. not to be isolated from the society and live on their own.

Sir David Attenborough and BBC achieved what the world universities failed to do, i.e. communicate science and technology in pedagogic and simple way, to inspire and motivate people, specially the young ones. To raise biodiversity as equally important, as climate change what regards our survival on planet Earth, is without hesitation an outcome of the work of Sir David Attenborough and through the systematic and continuous support of BBC (https://www.google.se/search?q=david+attenborough+nobel+prize&ie=UTF-8&oe=UTF-8&hl=sv-se&client=safari). This is why they are very well placed to be nominated for the Nobel Prize.

Recent Addition: Professor Torbjörn Ebenhard on the Editorial Board, Swedish University of Agricultural Sciences, Uppsala.

We are greatly honoured to have Professor Torbjörn Ebenhard on the Editorial Board of sustain-earth.com. Professor Torbjörn Ebenhard is the Deputy director of the Swedish Biodiversity Centre, Swedish University of Agricultural Sciences

Professor Ebenhard is a biologist with a B. Sc. degree from Uppsala University and a Ph. D. degree in zoological ecology from the same university. His early research was focused on island biogeography and conservation biology. Presently he is employed by the Swedish University of Agricultural Sciences, and based at its Swedish Biodiversity Centre (CBM). It is a special unit for research and communication on conservation, restoration and sustainable use of biodiversity as a crucial issue for society, especially as related to Sweden’s implementation of the UN Convention on Biological Diversity. Its mission is to initiate, conduct and coordinate policy-relevant research on the complex interactions between biodiversity and social development, and contribute to society’s capacity to manage these interactions in a sustainable way.

Apart from administrative tasks of Professor Ebenhard at CBM, he works on a number of assignments from the Swedish Environmental Protection Agency, supporting their activities on biological diversity in Sweden, and in international negotiations. Professor Ebenhard is mainly involved in the negotiations of the Convention on Biological Diversity (CBD) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), as a member of the Swedish national delegations. He is also member of the Scientific Council on Biological Diversity and Ecosystem Services at the SEPA, and serves on the board of WWF Sweden.

As explained by Professor Ebenhard “The recent Global Assessment Report on Biodiversity and Ecosystem Services produced by IPBES shows that the present and projected global loss of biodiversity jeopardizes our possibilities to reach the UN Sustainable Development Goals. Humanity is ultimately dependent on biodiversity for its wellbeing and survival. The food we eat, the clean water we drink, the clean air we breathe, fibres for clothing, wood for building homes, and bioenergy to replace fossil fuels – all is provided by biological diversity. But more is at stake. As we deplete the resources that could support us, we also annihilate living organisms and degrade natural ecosystems. According to the IPBES report at least 1 million species of animals and plants are now threatened with extinction. However, the IPBES report also gives hope, as it states that we can bend the curve of biodiversity loss, if we are determined to do so. What it takes is nothing less than a transformative change of the entire human society.”

Professor Ebenhard also reminds us that “Ten years ago the Convention on Biological Diversity (CBD), to which almost all countries are party, decided on a strategy and a set of global goals to conserve and sustainably use biodiversity, the so-called Aichi targets. They represent a high level of ambition, a much needed component of the transformative change IPBES envisages. CBD’s report Global Biodiversity Outlook 5, issued in September 2020, shows that none of the 20 Aichi targets will be met in full. This disappointing result, at a time when all targets should have been met, is due to a widespread inability by governments to implement the CBD strategy at the national level. Goals and targets at the national level have generally been set at a too low level of ambition, and national measures to reach these goals and targets have been insufficient. We do know, however, that when governments, as well as companies and individuals, have taken appropriate action, it does work, as shown by many successful cases of conservation and sustainable use around the world. But they are too few to bend the negative curve at global level.”

According to Professor Ebenhard “We now suffer the ravages of the covid-19 pandemic to our health and economy, while the growing climate crisis promises to make things much worse, but the looming biodiversity crisis will be of a completely different magnitude. The challenge now is to find integrated solutions, where the entire human society is involved in handling pandemics (there will be more than the present one), climate change and biodiversity loss. For this to happen we need people and decision makers to be aware of the nature of these crises, involve all stakeholders, set new ambitious strategies and goals for biodiversity and ecosystem services, strengthen national implementation and global cooperation, and work in a truly integrated way to address biodiversity loss, climate change and human wellbeing.”

Links: 

Swedish Biodiversity Centre: https://www.slu.se/en/Collaborative-Centres-and-Projects/swedish-biodiversity-centre1/

Convention on Biological Diversity: https://www.cbd.int/, and its report Global Biodiversity Outlook: https://www.cbd.int/gbo5

IPBES: https://ipbes.net/, and its Global Assessment Report on Biodiversity and Ecosystem Services: https://ipbes.net/global-assessment

Read more about the global biodiversity in the 2020 report (in English by the World Wildlife Fund ’WWF’, leading organization in wildlife conservation and endangered species (https://f.hubspotusercontent20.net/hubfs/4783129/LPR/PDFs/ENGLISH-FULL.pdf). Alternatively, hear the views of Swedish experts (in Swedish) on the state of biodiversity by 2020 where Professor Torbjörn Ebenhard is also contributing in (https://youtu.be/kf-bvla6GrU).

Torbjörn Ebenhard

New Addition – Editorial: Professor Anders Wörman. ‘KTH’ Royal Institute of Technology, Stockholm.

Professor Anders Wörman is the Head of division for Resources, Energy and Infrastructure, The Royal Institute of Technology, Stockholm (https://www.kth.se/profile/worman).

His research interest spans over wide-range of trans-disciplinary and trans-sectorial areas in engineering sciences and technology within water resources, hydrology and environmental hydraulics. Ongoing research are due to water and energy availability in terrestrial hydrology, effects of climate fluctuations and landscape changes on runoff, hydropower regulation, extreme flows in rivers and safety of embankment dams. His skill and expertise include: environmental impact assessment; water quality; water resources management; engineering, applied and computational mathematics; hydrological modeling; rivers; civil engineering, hydrologic and water resource modelling and simulation; water balance; waterfall runoff modelling; aquatic eco-systems; surface water geo-statistics; contaminant transport; groundwater penetration; radar and climate change impacts.

Professor Wörman was co-founder and the first manager of the undergraduate educational programme for Environmental and Aquatic Engineering at Uppsala Univ. before being chair prof. at KTH. KTH has dedicated research programmes in Applied Sustainability. One of such programmes is oriented towards finding customized solutions to develope sustainable and resilient technical applications that are climatically and environmentally suited for Africa (https://www.kth.se/en/om/internationellt/projekt/kth-in-africa/africa-1.619441). It is interesting to mention that the world longest river, the Nile, spans over large catchment areas that are located in different climatic/weather (spatio-temporal variability in temperature and precipitation) zones (http://atlas.nilebasin.org/treatise/nile-basin-climate-zones/). These special features of the Nile call for technologies that can cope with climate-environment changes of both natural and man-made origins. Combination of natural and man-made climate changes will certainly induce severe constraints and limitations on what, why and how ‘Water, Energy and Natural Resources (fossil and mineral deposits, eco-systems and biodiversity)’ Nexus need to be carefully accessed on long-term and large-scale bases. In this context, Prof. Wörman has trans-disciplinary and trans-sectorial knowledge suited to handle the complex, inextricable and multi-layered interactions within and between Water, Energy and Natural Resource Systems. These interactions are imperative to understand of coherent and resilient coupling with the Socio-Economic-Environment ‘SEE’ aspects in communities living in river-catchment systems in Africa. These issues are of special interest as river-systems are the dominant landscape units with huge importance for preservation and protection of renewable and fossil resources.

Editorial: What is Digital Water? Professor Bengt Carlsson, IT and System Control, Uppsala University explains.

We are delighted to have Professor Bengt, Carlsson at Department of Information Technology, Division of Systems and Control, Uppsala Univesity, on the Editorial Board of sustain-earth.com. As Prof. Bengt Carlsson put it in his words “Treating wastewater is great, but making the treatment resource-efficient is even greater”. Among the expertise of Professor Bengt Carlsson: energy efficiency; automatic control system identification; sustainable development; and wastewater engineering.

Sweden has been been a pioneer in water quality and water cleaning both what regards natural and urban waters. However, the digitalisation is now part of production, use and consumption of water worldwide as the pressure on water resources increased enormously and still accelerate. Here, we give an example on The UK Digital Water Utility Experience (https://youtu.be/V8DEAy3o0S8).

What are the greatest challenges for water and wastewater treatment today?
Some of the greatest challenges for water and wastewater treatment today is the contributions of pharmaceuticals that has increased pollution loads on environment. One challenge, is therefore, to effectively separate such residues in treatment plants and another is to cope with achieving climate-neutral wastewater treatment plants.

This post will be further updated and revised very soon.

Prosperity – Africa in the 21st Century

In a series of posts we will explore why the 21st century will be prosperous for Africa. Indeed, there are various reasons to predict why Africa will continue to shine more and more though the threats that climate change, including global warming, will hit Africa more than other continents (https://en.m.wikipedia.org/wiki/Climate_change_in_Africa). Naturally there are other threats that so far hindered Africa from faster developments as compared to the rest of the world, specially that the history of Africa is very much different. Here is a list of key factors, among others, about the ongoing tectonic changes and drivers that will bring a lot of positive socio-economic impacts in Africa.

– African identity, slavery and colonialism distorted her identity and disoriented her values. However, Africa was not the only continent that suffered colonization. The concept of African identity has changed are still changing relatively fast specially with the growing restrictions in migration.

– African independence, decolonization and transition to independence characterized the past century and national identities in many parts of Africa are gradually emerging.

– Large-scale infra-structures, there are mega projects taking place in Africa (the case of Egypt participation in partnership for goals, Goal 17 of UN-SDGs) such as developing its transport systems to connect the continent from the very north in e.g. Egypt to its very south, South Africa, also from the west to the east (https://www.egypttoday.com/Article/1/77914/Egypt-launches-32-projects-in-Africa-in-1-year-report). One example is the enormous use of smart phones technology in trade, business and finance.

– Coupling rural to urban regions, this among key and important issues in the development of Africa as 70% of African are living in rural Africa and producing 70-80% of agricultural outputs.,

– African Union, AU is a continental body of the 55 member states that make up the African Continent. It was officially launched in 2002 as a successor to the Organisation of African Unity (OAU, 1963-1999).

– Human resources, population growth and youth, towards 2100 the population of Africa will peak to about 40% of the world population with very high percentage of youth.

– Natural resources Africa is abundant with natural resources including diamonds. gold, oil, natural gas, uranium, copper, platinum, cobalt, iron, bauxite and cocoa beans. This is of course in addition to its amazing biodiversity.

– Generation shift, new generations and leaders are currently shaping and reshaping Africa, combating corruption, enhance good governance and transparency and taking advantage of modern technologies, e.g. ICT, IOT, crowdfunding, protection of natural resources, also in the energy, agriculture, farming, tourism and other sectors.

– Security, many African countries are becoming more aware about the improvement of national integrity and internal security and safety of population specially that Africa has a complex diversity of ethnic groups. Remarkable developments in safety in Africa took place and still the focus of the African countries.

– Biggest market in the world, the needs of Africa will make it one of the biggest market in the 21st century. There is diversification and expansion the economy and trade both internally and with the rest of the world including Europe and Asia. This will generate tectonic changes in international trade, business, transport and mobility in labor and services.

– Global investments. Based on data through 2017, France is the largest investor in Africa, although its stock of investment has remained largely unchanged since 2013, followed by the Netherlands, the United States, the United Kingdom and China. Geographically Europe and Asia can be linked through North Africa and the GCC countries.

– UN-SDGs the world has created a global agenda for promoting and implementing sustainability which Africa will benefit considerably from it. UN-SDGs and involved targets for developments are key issues that are shaping policies and strategies to cope with poverty, hunger, gender, inequalities, education quality, health, water and sanitation, energy, strong institutions, life quality, biodiversity, ……. etc.

THE DESIRE TO TEACH their children about computers drew these Samburu women to a classroom in a settlement north of Nairobi. They are learning about tablets—designed to withstand tough use—that connect to the Internet through a satellite and come preloaded with educational programs. Technology now has arrived in isolated regions of Africa primarily in the form of relatively inexpensive cell phones. From National Geographic https://www.nationalgeographic.com/magazine/2017/12/africa-technology-revolution/

Full Documentary of the Nile’s Social Life by Joanna Lumley

Though many journeys and expeditions were done to discover the secrets of the Nile, very few of them, if any at all, touched upon the diversity of life, traditions and cultures of the Nile people. The Nile people have deep rooted love and worship for the Nile and its waters for thousand of years. The Nile and its waters meant, still mean and will continue to do so for generations. The life of the Nile people is as complex as evolution and history of the Nile itself. In this context, the socio-economic performance of the people of the Nile is very central and crucial for finding sustainable and peaceful ways to share such magnificent gift of nature. These indeed, are parts of wicked conflicts of how to put such enormous diversity in political agreements for lasting harmony in the Nile Basin as a whole. This is also the case of the rest of Africa as rivers and their catchments are basic landscape units of existential importance for the livelihood of the African population. However, vast regions of Africa don’t enjoy surface water resource or rain and other alternatives are imperative such as groundwater, desalination and water reuse. In most cases we need to think in 3D-solutions that couple surface water with groundwater and also to understand the long-term consequences of water production, use and consumption on the landscape level on longterm and large-scale levels. This can be simple to say if such resources were infinite, however water scarcity in Africa is the highest in the world yet major threats are emerging due to climate change, growing population, increasing diversification in economy, acceleration of urbanisation and industrial activities with all consequences of growing waste and pollution. The search for how such transboundary solutions of the water resources to be shared is a major political issue. All of this come in the time of today’s very rapid and fast growing ’diversification’ of the socio-economic-environment conditions needed for the ongoing transformation to sustainable societies.

Joanna Lumley’s journey, in search for the very source of the Nile, by being the longest river in the world, comes with very interesting introduction on the cultural diversity of the life and livelihood of the population in the Nile Basin. Among the amazing issues is the longstanding socio-economic diversity that shaped the life in the Nile Basin for thousands of years ranging from e.g. evolution of tourism; preparation for marriage; social gathering and social therapy ‘Soffi’; beauty treatment ‘Dukhan دخان’ (form of SPA) of body, skin and smell; sports in rural areas; local food and drinks; coutry-side work and services. Traveling, for example, comes with major challenges because of the unique landscape in the African canyons, river-catchment and forests. Respect and appreciation of cultures is the secret of not only social success but more importantly to bring about harmony and resilience in the complex social mosaic that requires modern understanding of ‘what, how and why’ issues in modern sustainability.

Just to give few examples is how to live and travel in one of Africa’s largest canyons of the Blue Nile, 250 miles long. Also, how to manage the 60 rivers that drain rainwater to Lake Tana in Ethiopia. The country with 4/5 of the african mountains and Africa’s oldest cultures that is most diverse with great influences from ancient Egypt and Arabia.

One of the great future challenge of the 21st century is how to deal with the growing scarcity of Africa’s white gold ‘water’ (https://en.m.wikipedia.org/wiki/Water_scarcity_in_Africa As of 2006). One third of all African nations suffers from clean water scarcity and Sub-Saharan Africa has the largest number of water-stressed countries of any other place on the planet. It is estimated that by 2030 that 75 million to 250 million people in Africa will be living in areas of high water stress, which will likely displace anywhere between 24 million and 700 million people as conditions become increasingly unlivable.

Editorial Board: Prof. Jelel Ezzine, UNESCO Chair and Tunis El Manar, Tunisia.

Sustain-Earth.Com is mobilizing African professionals for empowering and scaling up Science, Technology and Innovation ‘STI’ to promote the UN-SDGs. We are honored to have Professor Jelel Ezzine UNESCO Chair Holder, Ecole Nationale d’Ingénieurs de Tunis, Tunisia, to join the Editorial Board at sustain-earth.com.

Prof. Jelel Ezzine is professional in Systems Theory and Control, University of Tunis El Manar, Tunisia. He has more than thirty years experience in Higher Education and Research. He initiated and co-founded the “Engineering and Technology Policy (ETP)” Master Program at ENIT. He is Chairholder of the UNESCO Chair on Science, Technology, and Innovation Policy. He is the Founding President of the Tunisian Association for the Advancement of Science, Technology, and Innovation (TAASTI).

Prof. Ezzine is the former Director General of International Cooperation, at the Tunisian Ministry of Higher Education and Scientific Research. He is, entre autres, Senior Member of IEEE, Senior Associate at ICTP. He is listed in Who’s Who in the World, and Who’s Who in Science and Engineering.

We give few examples of increasing threats of Climate and environmental changes on the southern shore of the Mediterranean Sea (from west to east): Morocco, Algeria, Tunisia, Egypt and the Islands of Malta and Cyprus. Hear the message from Prof. Ezzine in two videos (in French https://youtu.be/SfOQu90yzqs; and in English https://youtu.be/oCdz9Je6yvA).