Category: Sanitation & Hygiene

Sanitation and hygiene are very much related to poverty, illiteracy, use and abuse of natural resources in particular water resources. Poor sanitation and hygiene have major negative impacts on public health with serious feedback effects on productivity in all sectors and levels in the society. To enhance the socio-economic developments and achieve acceptable and sustainable levels, e.g. in Africa and Asia, organized, coordinated and regular efforts are needed to improve the situation in these regions. It is not a matter of individual responsibility only since children, students and labor are continuously interacting with each other in various daily life activities where common facilities and resources are usually shared. Access to organized forms information packages, coaching, training and demonstrations for raising public awareness among communities, stakeholder’s activities, organizations and institutes are IMPERATIVE.

Editorial Board – Dr. Mahmoud Abdel-Hafiez (AGYA)

It is our pleasure to welcome Dr. Mahmoud Abdel-Hafiez in the Editorial Board of sustain-earth.com. We would also like to congratulate him for being elected the German co-president of AGYA academy in sciences and humanities for the academic year 2021-2022. Short summary about AGYA Academy with text is extracted from the home-page of AGYA (http://agya.info) is also given below.

Dr. Mahmoud Abdel-Hafiez is currently associate Professor (Docent in physics) at Department of Physics and Astronomy, Uppsala University, Sweden. He has specific interest in studying quantum materials with thermodynamic, magnetic, and transport experiments in high pressure and low temperatures. His collaboration with others allow him to use neutron, x-ray scattering and muSR spectroscopy to study the magnetic ground state. The aim is to grow high quality single crystals of the materials used in his studies. His current interests include SC, CDW, and the behavior of electrons in 2D and 1D-materials.

In 2018-2020 he acted as Research Associate, Physics Department, Harvard University, Cambridge, Massachusetts, USA. During 2015-2018 he was Assistant Professor, Institute for Physics, Goethe-University Frankfurt, Germany. In 2014-2016 he acted as Group Leader at Center for High Pressure Science and Technology (HPSTAR) Beijing/Shanghai, China. While in 2013-2014 he was
Postdoctoral Researcher at Université de Liège, Belgium (Nanostructured Materials Group) directly after he finished his PhD in 2012 at TU Dresden / IFW Dresden, Germany (Thermodynamics and Magnetism). He obtained his B.Sc. and M.Sc. in Solid State Physics, Fayoum University, Egypt. He has numerous publications in pioneer high-quality journals together with researchers from many other universities as given in his C.V..

Short Summary on AGYA Academy. The Arab-German Young Academy ‘AGYA’ has 23 countries with one mission in Sciences and Humanities for bringing together excellent Arab and German scholars to address common challenges and develop solutions through sustainable research cooperation. The member countries of the AGYA (based In Germany (Berlin-Brandenburg Academy of Sciences and Humanities ‘BBAW’) and In Academy of Scientific Research and Technology ‘ASRT’ in Egypt) are Algeria, Bahrain, Comoros, Djubouti, Egypt, Iraq, Jordan, Kuwait, Lebanon, Libya, Mauritania, Morocco, Oman, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen.

AGYA promotes early-career scholars (3–10 years after PhD) from its member countries in the Arab world and Germany. The academy implements joint interdisciplinary research projects and initiatives at the interface of science and society with a focus on education, innovation, and science policy. It has various Work Groups in education, heritage, water, energy, environment, sustainable developments, health and society as well as innovation

The AGYA is unique organisation, it is the first bilateral young academy worldwide founded in 2013 and carries out research cooperation on equal terms. The academy’s members and its alumni/alumnae are involved in very interesting and broad activities for building a community of trust with interregional competence networking to inspire a new kind of research practice. Working collaboratively beyond borders, members share a socio-scientific vision of equal partnership and research excellence to realize cutting-edge research projects. AGYA has a well-structured cooperation framework with diverse infrastructure that enables strong links between researchers from many disciplines in the context of Arab-German scientific collaboration. Strengthening trans-disciplinary Arab-German human interactions allows fostering innovation in research across the natural sciences, technical sciences, life sciences, social sciences, humanities, and arts. It is by far an inclusive programme for bringing science in its broad definition nearer to a diverse socio-cultural environment to engage young graduates and researchers in central sustainability issues.

The approaches of AGYA are based on fresh perspectives, the members and alumni/alumnae share an interdisciplinary approach to scientific enquiry, with the intention of seeking broad inter-disciplinary solutions to future societal challenges. By being motivated to conduct cross-borders and interdisciplinary research, they are socially committed as academic international leaders. In this context, AGYA offers an unprecedented and excellent opportunity that members from all kinds of disciplines, subjects, and research fields meet and develop their interdisciplinary projects. The complexity of today’s challenges and the ongoing transformation to sustainable and resilient societies necessitates input from different disciplines and cultures to deal with existing wicked and yet common existential threats.

Cross-cultural Arab-German landscape can provide researchers with the necessary stimulation to uncover how much Arab and German societies actually have in common. Scarcity of resources, like clean water, clean air, renewable energy and sustainable food are common future challenges that needs international collaboration. Arab and German societies share common experiences that emanated from modern needs for integrating global migrants into higher education and scientific discourse. In this context AGYA provides fertile landscape to cultivate cultural heritage using shared ancient cultural technologies such as storytelling. AGYA in this respect facilitates the emergence of fresh and pioneering Arab-German perspectives for strengthening new forms of North-South-South cooperation.

For ensuring inclusiveness through principles of self-governance AGYA members are independent and free to determine their own research topics and agenda. They do this by connecting and forming partnerships with fellow members. All members meet to discuss the academy’s affairs and agenda in bi-annual general assemblies, Steering Committee are bring elected annually by the members. Through its activities the AGYA participants develop outstanding intercultural understanding and build abilities in self-governance, self-organization, and self-expression in multi-cultural environment. Unlike other academic organizations, AGYA’s alumni/alumna act as ambassadors of this culture thus inspiring others across the Arab-German academic world.

Collaborative research across borders creates spaces of interaction between researchers and with policymakers and other stakeholders. Research cooperation cultivates long-lasting multilayered relationships for building an academic civil society with more potential for shared understanding to productively clarify and mediate outside of the political arena with evidence-based policy advice. This makes the AGYA academy a true cross-cultural think tank that benefit German and Arab societies.

The AGYA is a vehicle for empowering and capacity building to enable its members to obtain, improve, and retain the skills, knowledge and resources to advance in research and dissemination of science to the society. In this context, AGYA has outreach activities to attract young scholars at the pre-Ph.D. and Ph.D. levels with consideration inclusiveness in areas of research, academic life including gender balance and advance of women in the academia. Among other activities, AGYA conduct international exhibitions (e.g. ‘From Cinderella to Sindbad: German and Arab Timeless Tales in Abu Dhabi), annual conferences, symposia and hands-on training for Career-Development-Plans. These take place in all its member countries and across all disciplines including technical sciences, social sciences, natural sciences, life sciences, humanities and art.

For more information on AGYA, also why and how to join the Academy (e.g. eligibility, requirements and application) please visit https://agya.info

Credit: https://AGYA.INFO

Yes We Can – The African Great Green Wall.

Young people in Africa, with support of the African Union, and in cooperation with youth from around the world (including university students and practitioners that participated on their own initiatives) are determined to build prosperous and rewarding future. Also, to take actions to stop the climate crisis, to promote and implement the United Nations Sustainable Development Goals. While the challenges are huge and demanding, they are enormously motivated to work together. With simple but yet very effective approaches, starting with small plants, they aim to stop desertification that have been going on for millennium in the Great Sahara Desert of North Africa (https://en.m.wikipedia.org/wiki/Sahara). This part of the world is one of the most arid, hot and uninhibited regions of the world. It has the world’s highest officially recorded average daily high temperature of 47 °C or 116.6 °F in a remote desert town of Algeria called Bou Bernous at an elevation of 378 metres (1,240 ft) above sea level, and only Death Valley of California rivals it.

A report from the UN reveals that drylands, including vast areas of desert, cover 41.3% of Earth’s total land area. What if large amounts of this land could be converted into fertile ground capable of producing crops? Also using their hidden natural vast resources sustainably. This is a particularly important question for many counties in the world which is now receiving serious and huge attention because of the increasing population, declining resources and also the diverse existential threats facing Earth. As we know the Arabian Peninsula including Kuwait 🇰🇼, Oman 🇴🇲 , Qatar 🇶🇦 , Saudi Arabia 🇸🇦 , the United Arab Emirates 🇦🇪 (UAE) has turned their desert to living and prosperous landscape. So, this can be also done for some of the great desert land of the Sahara that is separating Africa in two very distinctive and separated regions. China🇨🇳also turned, and is still turning, large areas of desert to green landscape (https://lnkd.in/epYPMChX). Technology isn’t only about urbanization and smart cities. Indeed, much can be done in rural, desert, mountain and coastal marine areas as modern technologies have unlimited possible solutions. Also, the Information Communication Technology ‘ICT’ and Internet of Things ‘IoT’ can facilitate and solve much of the previous difficulties. We need to think Out-of-the-Box and tune modern technology to meet needs other than cities and heavily urbanized areas. Science and Technology need to expand their horizons to wider global applications.

For ten years young Africans have been going to the desert to plant trees in their holidays. The communities of the Sahel-Sahara States are turning many acres of the desert to new green landscape just in several days. As is called ‘The Great Green Wall’ is an African-led movement (https://youtu.be/cphSne_HiPA) with ambition to grow an 8,000km natural wonder of the world across the entire width of Africa. A decade in and roughly 15% underway, the initiative is already bringing life back to Africa’s degraded landscapes at an unprecedented scale, providing food security, jobs and a reason to stay for the millions who live along its path. This will also help coping with the climate-crisis. Indeed, North Africa has enormous resources for producing renewable solar energies, and other solar-based technologies yet to be developed, as the world is turning its back to fossil energy resources for coping with the climate crisis and other associated threats.

Indeed, the movement of The Great Green Wall ‘GGW’ has diverse benefits not only for the most poorest Africans but also for Africa, the MENA region and the rest of the world in general (https://www.greatgreenwall.org/about-great-green-wall). It will:

(1) Improving millions of lives; (2) A global symbol for humanity overcoming biggest threat of rapidly degrading environment; (3) A vital contribution to the UN Sustainable Development Goals ‘SDGs’; (4) Growing a new world wonder across the entire width of Africa; (5) Growing fertile land, one of humanity’s most precious natural assets; (6) Growing a wall of hope against abject poverty; (7) Growing food security, for the millions that go hungry every day; (8) Growing health and wellbeing for the world’s poorest communities; (9) Growing improved water security, so women and girls don’t have to spend hours everyday fetching water; (10) Growing gender equity, empowering women with new opportunities; (12) Growing sustainable energy, powering communities towards a brighter future; (13) Growing green jobs, giving real incomes to families across the Sahel; (14) Growing economic opportunities to boost small business and commercial enterprise; (15) Growing a reason to stay to help break the cycle of migration; (16) Growing sustainable consumption pattern, to protect the natural capital of the Sahel; (17) Growing resilience to climate change in a region where temperatures are rising faster than anywhere else on Earth; (18) Growing a symbol of peace in countries where conflict continues to displace communities; (19) Growing strategic partnerships to accelerate rural development across Africa; (20) Growing a symbol of interfaith harmony across Africa. These are enormous incentives for the world to support the ongoing work of the GGW, it is now we can do it as we are running out of time.

Throughout history, humans have continuously moved and expanded all over planet Earth and turned vast unhibited areas to new prosperous landscape. Yet much of the natural resources on planet earth are kept unused or abused for some reason or another. What we don’t use properly we loose definitely and this was the case of the Great Desert of North Africa, the Sahara. It is now time to invest in Africa as Africa in the past supported Europe 🇪🇺and the USA 🇺🇸 , i.e. in the era of colonialism and slavery. With the birth of the UN after WWII, Paris agreement and the ratification of the UN-SDGs by the global community we are in a grand revolution to shape the world towards a new resilient and sustainable future.

From https://www.nationalgeographic.org/article/great-green-wall/

🛑 Fridays for Future – Global Climate Demonstrations.

Employees at Uppsala University UU, and the Swedish University of Agricultural Sciences SLU, joining the Global Climate Demonstration today Friday 24 September at Forumtorget in Uppsala around 15.30.

This is to show the leadership of UU and SLU their concern about the climate crisis, and to demand immediate action against the climate change. Universities need to show in practical terms and measures that they takes science seriously NOW, and they need to lead not only by examples but by actions as well.

https://stayhappening.com/e/global-klimatstrejk-uprootthesystem-E2ISTVWDWE0

Emergency Action to Restore Biodiversity and Protect Health from Global Environment Crisis

Indeed, it is not only about climate change anymore it is rather about a much wider large-scale and long-term Environmental crisis with unpredictable and irreversible impacts on biodiversity in general and the global health of humans in particular.

The combined effects and consequences of the ongoing degradation in biosphere, hydrosphere and atmosphere on biodiversity and human health would create severe health threats for all life forms on planet Earth. These degradation are brought about by environmental (e.g. pollution and waste) and climate change because of green-house gases specially carbon-dioxide. There are already signs of such effects but not yet understood and systematically researched. Such wicked and complex problems are new in science in general and medical ones in particular, They can’t, and will not, be cured by medical treatments and far beyond human capabilities to deal with even if the multilayered unknowns will be known. The functioning and metabolism in our bodies depends very strongly on the environmental conditions including the temperature. This wasn’t known for Darwin.

The UN General Assembly in September 2021 will bring countries together to meet again at the biodiversity summit in Kunming, China, and the climate conference (COP26) in Glasgow, UK. This time is about the serious situation what concerns the risks to health of increases above 1.5°C, which are now well established. The call in this post is stating that “Indeed, in the past 20 years, heat related mortality among people aged over 65 has increased by more than 50%. Among other things higher temperatures will bring about increased dehydration and renal function loss, dermatological malignancies, tropical infections, adverse mental health outcomes, pregnancy complications, allergies, and cardiovascular and pulmonary morbidity and mortality. Harms disproportionately affect the most vulnerable, including children, older populations, ethnic minorities, poorer communities, and those with underlying health problems”.

Editorial Board of BMJ for emergency action to limit global temperature increase, restore biodiversity, and protect health (https://www.bmj.com/content/374/bmj.n1734). As stated in this article “Health professionals are united with environmental scientists, businesses, and many others in rejecting that this outcome is inevitable. More can and must be done now—in Glasgow and Kunming—and in the immediate years that follow. We join health professionals worldwide who have already supported calls for rapid action.”

Though the current attention ⚠️ is focused on climate change we have to take in consideration many other large-scale and long-term threats that are associated with the increasing environmental degradation from pollution and waste. This calls wider actions to promote and implements the UN-SDGs.

World Data – VACCINE ISN’T A GUARANTEE AGAINST A NEW SURGE IN COVID CASES⁉️, THE FOURTH WAVE IS A THREAT ⁉️.

The vaccination dilemma continues to emerge as worldwide data with somewhat, but not yet enough, increased statistical validity are becoming widely available (http://knoema.com/infographics/vzmsqj/covid-19-vaccine-effectiveness-in-data-over-120-countries-at-risk-for-new-covid-spikes). There are several key issues in this respect on the global, regional and country/local levels. The global and regional levels are dealt with primarily by the WHO. Though its considerable value in assessing the global data and monitoring the global trends of infection and its spreading, it has limited economic potential to influence the worldwide vaccination. This is part of great global discrepancies in the vaccination rates and frequencies. This creates huge constraints in the global health issues, in particular to achieve the UN-SDGs what regards health, education and poverty. There are no other worldwide organisations that have either economic capacity or economic responsibility to raise the vaccination rates on the global scale.

So, we still have an ongoing global dialogue about who will be vaccinated and who will get a boost of a third shot of vaccine (https://www.nbcnews.com/think/opinion/covid-vaccine-booster-shots-delta-variant-are-being-over-hyped-ncna1275507). This adds new dimensions to how to handle the vaccination resources on the global scale. There are several reasons for the existing cloudy situation of the vaccination what regards its effectiveness, accessibility and availability. The Pfizer shot, for example, was only 39 percent effective in preventing symptomatic Covid infection from late June to mid-July, a nosedive from levels seen this winter and early spring. Though this observation is based on small group and covered narrow window of time, it has however triggered the needs for offering a booster of a third shot to people over 60 who were vaccinated more than five months ago. According to different sources the delta variant is more contagious and likely more severe than its predecessors, this has also raised prompt discussions on whether booster shots can stem them and once again restore the impenetrable immunity of vaccinated people.

The global penetration of vaccination is still a serious problem as some countries are almost ready with the vaccination of their overall populations while others have very low vaccination rates with only few percent of the total population are vaccinated. On the other hand countries with very high vaccination rates of 80% have more or less the same spreading rates of COVID as the countries with very small vaccination rates. This raises new worries that vaccines are not a guarantee against further surge in COVID cases and thereby additional risks for development of new mutations. For example, European countries where cases are increasing serve as a reminder that vaccination progress is not a guarantee against a new surge in COVID cases even in other parts of the world.

We still are getting new data about the efficiency of vaccines, for example moderna claims that their COVID-vaccine booster produces more robust response against the delta variant (https://www.cnbc.com/2021/08/05/moderna-covid-vaccine-booster-produces-robust-response-against-delta.html). Data from different countries that used different vaccines, e.g. from China, also suggest that we still have little, or not enough, knowledge on the global effectiveness of vaccines specially what regards their long-term and large-scale behaviour with consideration to all the parameters involved in assessing the wicked issues COVID spreading in relation to vaccination and opening of economies.

A medical worker from Parrish Medical Center holds a vial of the Moderna COVID-19 vaccine at a drive through vaccination clinic for employees of Port Canaveral, workers at local hotels and restaurants, and residents of the Port Canaveral community.
Paul Hennessy | LightRocket | Getty Images

COVID-19: Crisis and Challenges in Higher Education. The New Imperatives and Opportunities.

COVID-19 has changed the reality of life for many of us and will continue to do so for sometime. The first sectors that suffered from the COVID-19 pandemic were health services, the tourism and hospitality sectors along with other labor, trade and industry sectors.

Higher education, and education in general, has also been impacted by COVID-19 in various ways and are facing a global crisis that may take relatively longer time to recover depending of level of preparedness, availability of resources, existing infrastructures and degree of resilience. However, the crisis in education and higher education didn’t come as a surprise as it has been an ever growing cracking in higher education and global education systems in general, since the birth of ICT and IOT, and even before that. Indeed, many education systems around the world are either inherited or imported which have caused ever increasing gaps between what students get from their education and what is really needed in the market specially in the developing countries. Another short coming in higher education is the strong rooted tradition in out-dated disciplinary-based education systems where graduates have serious difficulties to meet today’s complexity in the labor market. The ongoing crisis is of global dimension and has introduced remarkable effects in R&D and also the associated educational infra-structures.

COVID-19 has changed our world dramatically and as we have in business and trade if you’re a brick-and-mortar retailer, an online store is no longer a nice-to-have; it’s essentially a must-have (https://www.bigcommerce.com/articles/offline-to-online/brick-and-mortar-retailers/). It is an inductive process that will be propagated very fast in all other sectors with far many new imperatives. All people simply need to be able to find you and communicate with you online. The COVID-19 has put new imperatives on sharp display when many brick-and-mortar stores were forced to temporarily shut their doors. Having an online store was the only way forward and it is likely that our world will change, at least partially in this direction as was the case with the old postage-system, to online banking, on-line booking of hotels, food, travels and all other ICT-services. Indeed, education will follow the same trend in a way or another. Though, the brick and mortar framework will still be the mainstay of our education system, for sometime, because of its undeniable advantages to learning in a shared physical space, online education is progressively and continuously gaining popularity. Still there are obstacles that need to be solved and will be solved. It is not a matter any longer of IF but rather WHEN and when was already yesterday. The autonomy and flexibility of e-learning make them extremely popular with working professionals and students as the entire e-learning industry is changing rapidly. This is an essential part of the ongoing Information Revolution.

Though there can be challenges to successfully tune and transform higher education systems, and the whole education landscape in general, from Brick & Mortar to Click & Mortar (https://digitallearning.eletsonline.com/2019/12/education-landscape-from-brick-mortar-to-click-mortar/) there are major long-term benefits and opportunities for generations to come. However, as we have learned from history higher education, and education systems, by being part of our social landscape are very much dependent on our lifestyle. Our life as we have it today and as it would be in the future is very much impacted by moving away from Brick & Mortar to Click and Mortar as the digital technologies are definitely here to stay and we have to adapt to this imperative reality. Sustain-earth.com will expand on many issues related to future threats, challenges and opportunities what regards higher education and and education in general.

Sustainable Developments and Role of Water-Energy Systems in the Anthropocene

Our water-energy systems around the world have complex and comprehensive interactions within and between each other. Yet, the complexity is accelerating more and more as global water-energy resources are also dependent on in the ongoing changes in the climate and environment. More importantly, the growth in world population along the increasing needs for water, energy, food and natural resources as well as eco-system services add new dimensions to how and when we can achieve the goals of the UN-SDGs.

The WEBINAR https://youtu.be/G3D0X96IuqY conducted at Boston University throws some light on what, why and how we can advance our knowledge on water-energy-food-climate nexus.

Part II of the ‘Sustainability in Science and Technology’ – The Human Performance.

The performance of humans is driven by diverse needs for food and security to overcome the challenges for decent live on Earth. 

This is an introduction to Part Two of the WEBINARS on “Sustainability in Science and Technology” – The Performance of humans’, hosted by sustain-earth.com.

Africa is the origin of homo sapiens and the renewables helped their evolution during millions of years and their migration out of Africa 70 000 years ago.

During the hunting gatherer era humans started to master artefacts and simple tools, also to build small communities and settlements. They domesticated animals, plants and learned to cultivate land and build shelters for their living.

The agricultural era that started 10 000 years ago culminated in an outstanding ancient Egyptian civilisation that lasted 3000 years. During this era people used water to promote agriculture, farming and to produce food. These achievements were made possible by taking advantages of renewable resources only, the sun (heat and light), water from the Nile and limited use of natural resources.

The mechanisation of agriculture in the 18th century during the first industrial revolution triggered increasing use of artificial pesticides and fertilisers. However, the limited water resources on Earth caused new needs for diversification of water production and management in order to have clean, affordable and accessible water for the growing population and the increasing urbanisation. The first industrial revolution involved various manufacturing processes supported by water and steam power.

The second industrial revolution in Britain was based on increasing electrification and use of combustion engines, rapid standardisation and industrialisation of many sectors in the 19th and 20th centuries. The widespread developments of the first and second industrial revolutions created huge pollution and waste in the atmosphere, the hydrosphere and the biosphere that continued and continued until now. New but limited renewable technologies, however, with zero net emission of green house gases started to appear by the end of the 20th century. This was due to the fear that fossil fuels are limited and have negative impacts on life. These developments were possible by more affordable access to renewable energies and the expanding use of alternating and direct current motors. Indeed, there are still several environmental challenges for scaling-up and scaling-out the renewables. Among these are the storage of renewables and integrating them in well-established grids. However, renewables and batteries require needs for new materials and further expansion of mining and processing that are dependent on heavy consumption of water and energy.

The third industrial revolution of digitalisation started by the end of the 20th century and opened new possibilities for increasing efficiencies and volumes of communication not only between humans but also between humans and machines, and between machines and machines as well.

The Information-Communication-Technologies and the Internet of Things will allow extensive and intensive expansion of Science and Technology with new gates for innovation worldwide on all levels and in many sectors. We have now many examples around the world which demonstrate that the boundaries between science fiction and technological realities are vanishing very very fast. We are, now, in urgent needs to proceed with the 4th industrial revolution and to continue with Artificial Intelligence and Machine Learning but with careful attention to the demands of renewables, preservation and protection of life.

Pre-announcement for Forthcoming WEBINARS 2021: Sustainability in Science and Technology.

The WEBINARS on Sustainability in Science and Technology will be hosted by sustain-earth.com. and will appear in 2021. They are coordinated by Professor em Farid El-Daoushy (Uppsala University, Sweden) and will be given by many professionals and professors from around the world. It is based on trans-disciplinary and trans-sectoral approaches to explain and detail several patio-temporal yet complex, wicked and interactive problems that piled-up over very long periods of time and caused the evolution of a new geologic era, i.e. the so-called anthropocene.

In part one, the natural drivers of life on planet earth, in the atmosphere, hydrosphere, biosphere and lithosphere, will be explained to give the necessary bases for understanding the boundary conditions of the natural climate and environment systems of the Earth. In part two the life-styles of humans ‘homo sapiens’ on planet since their evolution on Earth, and migration out of Africa 70 000 years ago, i.e. during different transitions and changes from the hanter gatherer era until now will be followed. Part three will give the impacts of the combined spatio-temporal interactions between human life and the planets’ own drivers on the global economic systems. Further part three will involve issues related to growth economy versus circular economy. In part four analysis of the performance of sustainability with reference to the first three parts will be done. In this context, resilience in human knowledge versus science, technology and innovation will be examined. These four parts together will give background information on ‘what, why and how’ what regards sustainability can be put together in a resilient framework to scale-up and scale-out science, technology and innovation to meet the UN-SDGs in order to achieve prosperity on planet Earth.

In summary the forthcoming WEBINARS can be described as follows:

Part One: The performance of planet Earth.

Part Two: The performance of humans ‘Homo Sapiens’.

Part Three: The performance of world economic systems with consideration to growth economy versus circular economy.

Part Four: The performance of sustainability. Resilience in knowledge versus science and technology.

Highly Recommended – All Our Food Is Nature Made. However ‘AI’ and ‘ML’ can Improve Food Industries.

Photosynthesis is the main reaction behind all life forms on planet Earth, it triggers life processes in global eco-systems on land and in aquatic systems (ocean, lakes and rivers). For photosynthesis to do its job and produce all forms of healthy and nutritious food that makes up global biodiversity, including us humans the ‘Homo Sapiens’ (https://en.m.wikipedia.org/wiki/Human) water is needed. Indeed, even if we say water is the origin of life, it isn’t totally 💯 correct as we still need carbon dioxide in trace amounts. An important question is high trace is trace? Even though we have water and carbon dioxide at the right concentration, we aren’t done yet, as we also need solar energy ‘light photons’ to initiate this magic reaction and the very secret of nature that evolved four billions of years ago, the ‘photosynthesis’.

There are many other imperatives that are needed for the natural photosynthesis to do its job properly and to keep it in tact with all the functioning and metabolism processes of life forms on earth apart from the reactants, i.e. water, carbon dioxide and the photon from the sun. We need healthy atmosphere and healthy hydrosphere, these underlying spheres of life are currently undergoing continuous degradation by us humans. This indeed imposes great threat for the proper functioning and metabolism of the very basic mechanism that fuels the life on Earth, i.e. the photosynthesis.

The atmosphere is important for agricultural sectors and farming, apart from supporting the forest eco-systems. Naturally healthy and fertile soils, are also needed, that have the right mixture of nutrients and free from toxic chemical remains and heavy metals. Also, soils need to have good water holding capacity which is regulated by the organic content. For the atmosphere to be healthy environment for the photosynthesis to take place on land, we must have suitable atmospheric composition, e.g. carbon dioxide concentration that allows having appropriate temperature, in addition to being a necessary component for photosynthesis. Also, not to have toxic compounds in the atmosphere such as nitrogen oxides that through photo-reactions can produce boundary-layer ozone that has negative impacts on growth of vegetation, in particular forests.

What regards aquatic systems we still need suitable temperature (which is dependent also on the heat-balance in the atmosphere) in water bodies, suitable pH as acidification from acidic nitrogen- and sulphur-oxides destroys the living-habitats of fish such the corals in the ocean, also it destroys the food-web and kills fish as in fresh-water lakes and rivers; suitable amount and levels of oxygen for breathing is also imperative in aquatic systems. Naturally, we need also other trace nutrients in particular phosphorus, nitrogen and potassium (applies also for healthy vegetation on land and agricultural production). However, excess amount of nutrients cause eutrophication as the water bodies become overly enriched with minerals and nutrients which induce excessive growth of algae. This results in oxygen depletion in the water body after the bacterial degradation of the algae. As an example is the so-called ‘algal bloom’ or great increase of phytoplankton levels. Eutrophication is often induced by the discharge of nitrate or phosphate-compounds, fertilisers or sewage into aquatic systems.

We humans so far failed to imitate nature, i.e. to do what is known as ‘Artificial photosynthesis’ which still science fiction. Would we ever have Artificial Intelligence ‘AI’ to cultivate our earth, produce our food and create an Artificial Biodiversity? ‘AI’ can create robots and machines that imitate us humans in many ways through collecting the patterns of our behaviour. Robots can’t run the life on our planet itself but they can be better version of humans through Machine Learning ‘ML’ and thereby replace humans to do many many jobs in food industries, and also many other industries.

The implementation of AI and ML in food manufacturing and restaurant businesses is already moving our industry to a new level of performance, enabling fewer human errors, less waste of abundant products, less infections. They also allow lowering costs for storage, delivery and transportation. They can create happier customers through timely and quicker service. Even they can allow voice searching, more personalised and effective orders. Robotics for big factories and restaurant businesses will occupy its niche very soon and will bringing more benefits in the long run. Both AI and ML benefit from the enormous flora of sensors, actuators in addition to digital coding and programming.

For more details on these issues see: https://www.google.se/amp/s/spd.group/machine-learning/machine-learning-and-ai-in-food-industry/amp/.

Being able to read all the article we invite you to follow us and subscribe to sustain-earth.com. Meanwhile enjoy these drinks: https://www.youtube.com/watch?v=DT53K9d0vUU

Introduction – Part One: The Three Main Drivers of Life on Planet Earth “Energy, Water and Natural Resources”.

Introduction to the forthcoming WEBINARS, hosted by sustain-earth.com, on “Sustainability in Science, Technology and Innovation ’SISTI’ of Water, Energy and Natural Resources”. Part One of the introduction – The three main drivers of life on Earth: “Energy, Water and Natural Resources WENR”. These drivers, by being dependent on the main underlying and interactive sphere of the Earth System (atmosphere, hydrosphere, biosphere and lithosphere) are decisive for the performance and quality of both the life on planet Earth and the life of humans.

These three drivers ‘WENR’ have, so far, sustained all life forms on planet earth. Energy from the sun triggers photosynthesis where water in the HYDROSPHERE together with carbon dioxide in ATMOSPHERE have been the bases of all life in the BIOSPHERE both on land and in aquatic systems. Minor amounts of earth’s mineral resources in the upper LITHOSPHERE are also used as nutrients in the evolution of biodiversity and associated eco-services we benefit from as well as the production of our food. Homo Sapiens are not only part of the global biodiversity but they are becoming the main actor shaping it. Homo Sapiens extended the production. use and consumption of energy, water and the natural resources in the atmosphere (where oxygen is also crucial for life), hydrosphere, biosphere and lithosphere (including fossil minerals) for their living. The extensive and accelerating use of these drivers has surpassed the natural capacities and boundaries of planet earth to sustain all its life forms.

These drivers are imperative to achieve sustainable prosperity through integrated and resilient economic, environmental and social synergies. They involve trans-disciplinary and trans-sectorial (nexus) interactions in the socio-environment-economic fabrics that are shaping the future our planet including all societies around the world. Incorporating Environment-Social-Governace ‘ESG’ is fundamental for healthy and wealthy economies around the world.

To join, follow and get all the updates about our WEBINARS, directly to your e-mail, subscribe @sustain-earth.com. We have also created YouTube channel to support our activities, subscribe and join us.

Highly Recommended 💯 – Public Health Risks, The COVID-19 Can Spread by AC and Building Ventilation

Though the expectation of vaccine is around the corner, we still need to wait for at least few months. Meanwhile COVID-19 will not go away by itself and it will still be with us for sometime.

It is commonly known that COVID-19 can spread through aerosol droplets for quite some distant, get attached and accumulated on surfaces for time periods that allow them to circulation in buildings by ventilation and air-conditioning systems. Though there are risks and indications that AC and ventilation systems can cause spreading of COVID-19 there are still limited, systematic detailed and comprehensive studies on the exact effects of humidity, temperature and the technical specification of filters in large central ventilation and AC system. Through the so-called ‘Memory Effects’, e.g. in Offices, Towers, Restaurants, Hotels and similar Complex Buildings. In theory, it is enough that few infected persons can cause spreading of COVID-19 in the whole building if control, considerations and precautions are not well in place. Though out-door air can be used to some extent to mitigate this problem there are still several limitations. So, degraded indoors air-quality can in itself cause serious public health issues as we still don’t have enough knowledge. Even being tested negative isn’t enough to be safe in air-flights (https://www.google.se/amp/s/www.cnbc.com/amp/2020/10/14/travel-and-coronavirus-do-pre-flight-covid-19-tests-work.html).

We are facing the threats of a second wave that may very well be much aggressive and we need to be very careful about indoors air-quality. Air-quality is definitely a serious matter that requires good sanitation in air and also how to deal with it needs to call our attention.

Few observations, literature and research articles on this matters are given here.

https://www.google.se/amp/s/nationalpost.com/health/covid-19-likely-spread-by-building-ventilation-say-canadian-researchers-working-on-an-hvac-fix/wcm/fda18c51-8cce-4640-8855-52cec5b0410f/amp/

https://nationalpost.com/health/covid-19-likely-spread-by-building-ventilation-say-canadian-researchers-working-on-an-hvac-fix

https://www.urbaneer.com/blog/can_i_catch_covid_19_from_heating_ventilation_air_conditioning_systems

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182754/

https://www.nytimes.com/wirecutter/blog/air-conditioning-coronavirus/

https://www.businessinsider.com/turning-off-ac-could-limit-chance-of-infection-experts-say-2020-4

2020 – 24 Hours of Daily Reality Taking Place on Earth and Countdown to Uncertain Future

Interesting and scary reading that describes the daily reality around the world as experienced during 2020. What is going on planet Earth and the impacts of our irresponsible use of the global natural resources, in particular energy resources (by industry, transport, building and others), is based on scientific data and statistics specially what regards the atmospheric pollution. Among such impacts is the accelerating increase in the earth’s surface temperature (1880-2019).

What is happening in the atmosphere is triggering a global ‘Domino Effect’ with severe impacts on all other key spheres on Planet Earth. In particular the hydrosphere, the biosphere and ecosphere with tectonic threats on our living landscape (both rural and urban) and on daily basis. Global warming is also a medical emergency in times where COVID-19 pandemic makes the life more severe for many of us. The can be. connections between global warming and the COVID-19 pandemic. What is more serious is the scientific and technological advances, for many reasons, would not protect us against the consequences of global warming and will not bring back the decline in natural resources including loss of biodiversity. What is done is done and can’t be redone. As an example the CRISPR/Cas9 genetic scissor is unlikely to solve diseases caused by air and water pollution, also the mitigate the loss in biodiversity and tackle degradation in life-quality of atmosphere, bio and eco-sphere.

https://drive.google.com/file/d/1Gus8YH7ROjn-twSwt7K_Yxk6MuCNquII/view?usp=drivesdk

Sir David Attenborough and BBC for the Nobel Prize in Peace

The Nobel Prize for Peace (https://www.nobelprize.org/prizes/lists/all-nobel-peace-prizes/) has been awarded 100 times to 134 Nobel Laureates between 1901 and 2019, 107 individuals and 27 organizations. Among the International organizaions: Red Cross that got the Prize three times (in 1917, 1944 and 1963), the United Nations High Commissioner for Refugees got it two times (in 1954 and 1981), the Intergovernmental Panel on Climate Change (IPCC) and Albert Arnold (Al) Gore Jr. (2007), International Atomic Energy Agency (IAEA) and Mohamed ElBatadei (2005). These are some examples, in the same manner, we can argue that BBC and Sir David Attenborough would also be excellent candidates that deserve the Nobel Prize for Peace.

The world was just waiting for this incredible event of Sir David Attenborough to join the Instagram. It is just to use Instagram as amplifier for lifting-up biodiversity as an important part of ‘Life on Our Planet’. In just few days his Intagram Account went viral (https://instagram.com/davidattenborough?igshid=11ay0osmkukkp) with millions of followers and more to come. It is as he has an important message to us. The power of social media can hardly be ignored anymore even by highly educated professionals and politicians. What is more important is the content of social media channels that keep improving as more and more are becoming dependent on them and critical voices continue to add new dimensions as ‘survival of the fit’ is becoming an evolution and the norm for progress on the Internet. With the rise of the Internet (https://en.m.wikipedia.org/wiki/Internet) and the boom 🤯 of social media (https://en.m.wikipedia.org/wiki/Social_media) it is crucial to underline that quality of the content is being recognised more and more by the users. For a great portion of us, that can’t afford regular schooling and/or the expensive higher education, the social media channels are becoming an important source, if not the only source, of knowledge. Classical, conventional and international broadcasting channels (https://en.m.wikipedia.org/wiki/International_broadcasting) aren’t the only standard source of information and knowledge for many of us as they used to be. Though these trends, the global education systems, including higher education, are still closed systems as they don’t necessarily serve, i.e. the needs, the majority of the world population but rather an elite minority, as in football and other sports. Education, knowledge and knowledge transfer are imperative also as tools for public awareness, to share the responsibility, and not necessarily as a passport to the labor market that still support growth/linear economy. Universities and higher education institutes still lack efficient tools to reach out to the normal citizens, mediate knowledge and come near the society through tight engagement and active interactions. This is also the case for public education funded by taxes. Though the extreme importance of education institutes, in particular higher education, they still use ‘business-as-usual’ strategies without enough outreach policies to mediate and advocate knowledge to the public for protection and preservation of our common natural resources. This is the third duty of the universities and not only to perform pure ‘Research and Education’ that still can’t cope to solve existential problems as climate and environment changes, and the collapse in biodiversity, also to offer the necessary services to the citizens in major health disasters and pandemics as COVID-19. This is partly because universities and higher education continue to fail in creating partnership for goals neither with the citizens nor with the politicians as these are also part of their responsibilities, i.e. not to be isolated from the society and live on their own.

Sir David Attenborough and BBC achieved what the world universities failed to do, i.e. communicate science and technology in pedagogic and simple way, to inspire and motivate people, specially the young ones. To raise biodiversity as equally important, as climate change what regards our survival on planet Earth, is without hesitation an outcome of the work of Sir David Attenborough and through the systematic and continuous support of BBC (https://www.google.se/search?q=david+attenborough+nobel+prize&ie=UTF-8&oe=UTF-8&hl=sv-se&client=safari). This is why they are very well placed to be nominated for the Nobel Prize.

Recent Addition: Professor Torbjörn Ebenhard on the Editorial Board, Swedish University of Agricultural Sciences, Uppsala.

We are greatly honoured to have Professor Torbjörn Ebenhard on the Editorial Board of sustain-earth.com. Professor Torbjörn Ebenhard is the Deputy director of the Swedish Biodiversity Centre, Swedish University of Agricultural Sciences

Professor Ebenhard is a biologist with a B. Sc. degree from Uppsala University and a Ph. D. degree in zoological ecology from the same university. His early research was focused on island biogeography and conservation biology. Presently he is employed by the Swedish University of Agricultural Sciences, and based at its Swedish Biodiversity Centre (CBM). It is a special unit for research and communication on conservation, restoration and sustainable use of biodiversity as a crucial issue for society, especially as related to Sweden’s implementation of the UN Convention on Biological Diversity. Its mission is to initiate, conduct and coordinate policy-relevant research on the complex interactions between biodiversity and social development, and contribute to society’s capacity to manage these interactions in a sustainable way.

Apart from administrative tasks of Professor Ebenhard at CBM, he works on a number of assignments from the Swedish Environmental Protection Agency, supporting their activities on biological diversity in Sweden, and in international negotiations. Professor Ebenhard is mainly involved in the negotiations of the Convention on Biological Diversity (CBD) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), as a member of the Swedish national delegations. He is also member of the Scientific Council on Biological Diversity and Ecosystem Services at the SEPA, and serves on the board of WWF Sweden.

As explained by Professor Ebenhard “The recent Global Assessment Report on Biodiversity and Ecosystem Services produced by IPBES shows that the present and projected global loss of biodiversity jeopardizes our possibilities to reach the UN Sustainable Development Goals. Humanity is ultimately dependent on biodiversity for its wellbeing and survival. The food we eat, the clean water we drink, the clean air we breathe, fibres for clothing, wood for building homes, and bioenergy to replace fossil fuels – all is provided by biological diversity. But more is at stake. As we deplete the resources that could support us, we also annihilate living organisms and degrade natural ecosystems. According to the IPBES report at least 1 million species of animals and plants are now threatened with extinction. However, the IPBES report also gives hope, as it states that we can bend the curve of biodiversity loss, if we are determined to do so. What it takes is nothing less than a transformative change of the entire human society.”

Professor Ebenhard also reminds us that “Ten years ago the Convention on Biological Diversity (CBD), to which almost all countries are party, decided on a strategy and a set of global goals to conserve and sustainably use biodiversity, the so-called Aichi targets. They represent a high level of ambition, a much needed component of the transformative change IPBES envisages. CBD’s report Global Biodiversity Outlook 5, issued in September 2020, shows that none of the 20 Aichi targets will be met in full. This disappointing result, at a time when all targets should have been met, is due to a widespread inability by governments to implement the CBD strategy at the national level. Goals and targets at the national level have generally been set at a too low level of ambition, and national measures to reach these goals and targets have been insufficient. We do know, however, that when governments, as well as companies and individuals, have taken appropriate action, it does work, as shown by many successful cases of conservation and sustainable use around the world. But they are too few to bend the negative curve at global level.”

According to Professor Ebenhard “We now suffer the ravages of the covid-19 pandemic to our health and economy, while the growing climate crisis promises to make things much worse, but the looming biodiversity crisis will be of a completely different magnitude. The challenge now is to find integrated solutions, where the entire human society is involved in handling pandemics (there will be more than the present one), climate change and biodiversity loss. For this to happen we need people and decision makers to be aware of the nature of these crises, involve all stakeholders, set new ambitious strategies and goals for biodiversity and ecosystem services, strengthen national implementation and global cooperation, and work in a truly integrated way to address biodiversity loss, climate change and human wellbeing.”

Links: 

Swedish Biodiversity Centre: https://www.slu.se/en/Collaborative-Centres-and-Projects/swedish-biodiversity-centre1/

Convention on Biological Diversity: https://www.cbd.int/, and its report Global Biodiversity Outlook: https://www.cbd.int/gbo5

IPBES: https://ipbes.net/, and its Global Assessment Report on Biodiversity and Ecosystem Services: https://ipbes.net/global-assessment

Read more about the global biodiversity in the 2020 report (in English by the World Wildlife Fund ’WWF’, leading organization in wildlife conservation and endangered species (https://f.hubspotusercontent20.net/hubfs/4783129/LPR/PDFs/ENGLISH-FULL.pdf). Alternatively, hear the views of Swedish experts (in Swedish) on the state of biodiversity by 2020 where Professor Torbjörn Ebenhard is also contributing in (https://youtu.be/kf-bvla6GrU).

Torbjörn Ebenhard

New Addition – Editorial: Professor Anders Wörman. ‘KTH’ Royal Institute of Technology, Stockholm.

Professor Anders Wörman is the Head of division for Resources, Energy and Infrastructure, The Royal Institute of Technology, Stockholm (https://www.kth.se/profile/worman).

His research interest spans over wide-range of trans-disciplinary and trans-sectorial areas in engineering sciences and technology within water resources, hydrology and environmental hydraulics. Ongoing research are due to water and energy availability in terrestrial hydrology, effects of climate fluctuations and landscape changes on runoff, hydropower regulation, extreme flows in rivers and safety of embankment dams. His skill and expertise include: environmental impact assessment; water quality; water resources management; engineering, applied and computational mathematics; hydrological modeling; rivers; civil engineering, hydrologic and water resource modelling and simulation; water balance; waterfall runoff modelling; aquatic eco-systems; surface water geo-statistics; contaminant transport; groundwater penetration; radar and climate change impacts.

Professor Wörman was co-founder and the first manager of the undergraduate educational programme for Environmental and Aquatic Engineering at Uppsala Univ. before being chair prof. at KTH. KTH has dedicated research programmes in Applied Sustainability. One of such programmes is oriented towards finding customized solutions to develope sustainable and resilient technical applications that are climatically and environmentally suited for Africa (https://www.kth.se/en/om/internationellt/projekt/kth-in-africa/africa-1.619441). It is interesting to mention that the world longest river, the Nile, spans over large catchment areas that are located in different climatic/weather (spatio-temporal variability in temperature and precipitation) zones (http://atlas.nilebasin.org/treatise/nile-basin-climate-zones/). These special features of the Nile call for technologies that can cope with climate-environment changes of both natural and man-made origins. Combination of natural and man-made climate changes will certainly induce severe constraints and limitations on what, why and how ‘Water, Energy and Natural Resources (fossil and mineral deposits, eco-systems and biodiversity)’ Nexus need to be carefully accessed on long-term and large-scale bases. In this context, Prof. Wörman has trans-disciplinary and trans-sectorial knowledge suited to handle the complex, inextricable and multi-layered interactions within and between Water, Energy and Natural Resource Systems. These interactions are imperative to understand of coherent and resilient coupling with the Socio-Economic-Environment ‘SEE’ aspects in communities living in river-catchment systems in Africa. These issues are of special interest as river-systems are the dominant landscape units with huge importance for preservation and protection of renewable and fossil resources.

Editorial: What is Digital Water? Professor Bengt Carlsson, IT and System Control, Uppsala University explains.

We are delighted to have Professor Bengt, Carlsson at Department of Information Technology, Division of Systems and Control, Uppsala Univesity, on the Editorial Board of sustain-earth.com. As Prof. Bengt Carlsson put it in his words “Treating wastewater is great, but making the treatment resource-efficient is even greater”. Among the expertise of Professor Bengt Carlsson: energy efficiency; automatic control system identification; sustainable development; and wastewater engineering.

Sweden has been been a pioneer in water quality and water cleaning both what regards natural and urban waters. However, the digitalisation is now part of production, use and consumption of water worldwide as the pressure on water resources increased enormously and still accelerate. Here, we give an example on The UK Digital Water Utility Experience (https://youtu.be/V8DEAy3o0S8).

What are the greatest challenges for water and wastewater treatment today?
Some of the greatest challenges for water and wastewater treatment today is the contributions of pharmaceuticals that has increased pollution loads on environment. One challenge, is therefore, to effectively separate such residues in treatment plants and another is to cope with achieving climate-neutral wastewater treatment plants.

This post will be further updated and revised very soon.

Prosperity – Africa in the 21st Century

In a series of posts we will explore why the 21st century will be prosperous for Africa. Indeed, there are various reasons to predict why Africa will continue to shine more and more though the threats that climate change, including global warming, will hit Africa more than other continents (https://en.m.wikipedia.org/wiki/Climate_change_in_Africa). Naturally there are other threats that so far hindered Africa from faster developments as compared to the rest of the world, specially that the history of Africa is very much different. Here is a list of key factors, among others, about the ongoing tectonic changes and drivers that will bring a lot of positive socio-economic impacts in Africa.

– African identity, slavery and colonialism distorted her identity and disoriented her values. However, Africa was not the only continent that suffered colonization. The concept of African identity has changed are still changing relatively fast specially with the growing restrictions in migration.

– African independence, decolonization and transition to independence characterized the past century and national identities in many parts of Africa are gradually emerging.

– Large-scale infra-structures, there are mega projects taking place in Africa (the case of Egypt participation in partnership for goals, Goal 17 of UN-SDGs) such as developing its transport systems to connect the continent from the very north in e.g. Egypt to its very south, South Africa, also from the west to the east (https://www.egypttoday.com/Article/1/77914/Egypt-launches-32-projects-in-Africa-in-1-year-report). One example is the enormous use of smart phones technology in trade, business and finance.

– Coupling rural to urban regions, this among key and important issues in the development of Africa as 70% of African are living in rural Africa and producing 70-80% of agricultural outputs.,

– African Union, AU is a continental body of the 55 member states that make up the African Continent. It was officially launched in 2002 as a successor to the Organisation of African Unity (OAU, 1963-1999).

– Human resources, population growth and youth, towards 2100 the population of Africa will peak to about 40% of the world population with very high percentage of youth.

– Natural resources Africa is abundant with natural resources including diamonds. gold, oil, natural gas, uranium, copper, platinum, cobalt, iron, bauxite and cocoa beans. This is of course in addition to its amazing biodiversity.

– Generation shift, new generations and leaders are currently shaping and reshaping Africa, combating corruption, enhance good governance and transparency and taking advantage of modern technologies, e.g. ICT, IOT, crowdfunding, protection of natural resources, also in the energy, agriculture, farming, tourism and other sectors.

– Security, many African countries are becoming more aware about the improvement of national integrity and internal security and safety of population specially that Africa has a complex diversity of ethnic groups. Remarkable developments in safety in Africa took place and still the focus of the African countries.

– Biggest market in the world, the needs of Africa will make it one of the biggest market in the 21st century. There is diversification and expansion the economy and trade both internally and with the rest of the world including Europe and Asia. This will generate tectonic changes in international trade, business, transport and mobility in labor and services.

– Global investments. Based on data through 2017, France is the largest investor in Africa, although its stock of investment has remained largely unchanged since 2013, followed by the Netherlands, the United States, the United Kingdom and China. Geographically Europe and Asia can be linked through North Africa and the GCC countries.

– UN-SDGs the world has created a global agenda for promoting and implementing sustainability which Africa will benefit considerably from it. UN-SDGs and involved targets for developments are key issues that are shaping policies and strategies to cope with poverty, hunger, gender, inequalities, education quality, health, water and sanitation, energy, strong institutions, life quality, biodiversity, ……. etc.

THE DESIRE TO TEACH their children about computers drew these Samburu women to a classroom in a settlement north of Nairobi. They are learning about tablets—designed to withstand tough use—that connect to the Internet through a satellite and come preloaded with educational programs. Technology now has arrived in isolated regions of Africa primarily in the form of relatively inexpensive cell phones. From National Geographic https://www.nationalgeographic.com/magazine/2017/12/africa-technology-revolution/

Full Documentary of the Nile’s Social Life by Joanna Lumley

Though many journeys and expeditions were done to discover the secrets of the Nile, very few of them, if any at all, touched upon the diversity of life, traditions and cultures of the Nile people. The Nile people have deep rooted love and worship for the Nile and its waters for thousand of years. The Nile and its waters meant, still mean and will continue to do so for generations. The life of the Nile people is as complex as evolution and history of the Nile itself. In this context, the socio-economic performance of the people of the Nile is very central and crucial for finding sustainable and peaceful ways to share such magnificent gift of nature. These indeed, are parts of wicked conflicts of how to put such enormous diversity in political agreements for lasting harmony in the Nile Basin as a whole. This is also the case of the rest of Africa as rivers and their catchments are basic landscape units of existential importance for the livelihood of the African population. However, vast regions of Africa don’t enjoy surface water resource or rain and other alternatives are imperative such as groundwater, desalination and water reuse. In most cases we need to think in 3D-solutions that couple surface water with groundwater and also to understand the long-term consequences of water production, use and consumption on the landscape level on longterm and large-scale levels. This can be simple to say if such resources were infinite, however water scarcity in Africa is the highest in the world yet major threats are emerging due to climate change, growing population, increasing diversification in economy, acceleration of urbanisation and industrial activities with all consequences of growing waste and pollution. The search for how such transboundary solutions of the water resources to be shared is a major political issue. All of this come in the time of today’s very rapid and fast growing ’diversification’ of the socio-economic-environment conditions needed for the ongoing transformation to sustainable societies.

Joanna Lumley’s journey, in search for the very source of the Nile, by being the longest river in the world, comes with very interesting introduction on the cultural diversity of the life and livelihood of the population in the Nile Basin. Among the amazing issues is the longstanding socio-economic diversity that shaped the life in the Nile Basin for thousands of years ranging from e.g. evolution of tourism; preparation for marriage; social gathering and social therapy ‘Soffi’; beauty treatment ‘Dukhan دخان’ (form of SPA) of body, skin and smell; sports in rural areas; local food and drinks; coutry-side work and services. Traveling, for example, comes with major challenges because of the unique landscape in the African canyons, river-catchment and forests. Respect and appreciation of cultures is the secret of not only social success but more importantly to bring about harmony and resilience in the complex social mosaic that requires modern understanding of ‘what, how and why’ issues in modern sustainability.

Just to give few examples is how to live and travel in one of Africa’s largest canyons of the Blue Nile, 250 miles long. Also, how to manage the 60 rivers that drain rainwater to Lake Tana in Ethiopia. The country with 4/5 of the african mountains and Africa’s oldest cultures that is most diverse with great influences from ancient Egypt and Arabia.

One of the great future challenge of the 21st century is how to deal with the growing scarcity of Africa’s white gold ‘water’ (https://en.m.wikipedia.org/wiki/Water_scarcity_in_Africa As of 2006). One third of all African nations suffers from clean water scarcity and Sub-Saharan Africa has the largest number of water-stressed countries of any other place on the planet. It is estimated that by 2030 that 75 million to 250 million people in Africa will be living in areas of high water stress, which will likely displace anywhere between 24 million and 700 million people as conditions become increasingly unlivable.

HR-Group for UN-SDGs in Africa – Prof. Amidu O. Mustapha.

Sustain-Earth.Com will work on mobilizing Human Resources in Africa for empowering the youth and students for scaling up Science, Technology and Innovation ‘STI’ to promote the UN-SDGs. We are delighted to have Professor Amidu Olalekan Mustapha from University of Agriculture, Abeokuta, Nigeria to work on these issues.

Furthermore, the necessary instruments and tools will be developed and implemented for active engagement of the higher education, universities and research institutions in Africa to couple ‘STI’ to society, population and market needs. University graduates, early-stage researchers and professionals (according to scientific and technical merits) through dedicated mentoring programmes will act as catalysts in creating the necessary multi-layered links with relevant stakeholders in all sectors and on all levels. The diverse, rich and wide-range of higher education and research programmes in Africa will provide the necessary Human Resources ‘HR’. This will involve raising the public awareness among the involved stakeholders. A data-base will be created to define, collect and compile the expertise, professional and the targeted stakeholders.

The involvement of high-level interactions with sectors and organisations as was the case in previous trans-disciplinary and trans-sectorial activities, e.g. IRPA-Nairobi Conference in 2010 (http://www.iur-uir.org/en/archives/conferences/id-44-afrirpa2010-third-african-irpa-regional-congress) will be assessed. This will be part of building on previous experiences and successes of already existing networking infra-structures. However, this will still require major challenges but suitable grounds will be found for what and how to do. According to Professor Amidu Mustapha there are a number of existing initiatives and platforms that we can link up with, e.g. both in Nigeria and Kenya. The members of the existing groups may also have other goals in addition, but we can benefit mutually in the common areas of environmental sustainability and knowledge development especially among youths.

A starting point will also involve reshaping and tuning two previously given courses at Uppsala university in 2018 and 2019 (http://teknat.uu.se/digitalAssets/395/c_395062-l_3-k_sustainability-in-science-and-technology.pdf; http://www.teknat.uu.se/digitalAssets/395/c_395062-l_1-k_sustainability-in-science-and-technology-2019.pdf). In these two course water, energy and natural resources nexus were detailed in order to explore what, why and how these drivers can be coupled to socio-economic-environment aspects that are necessary to help the ongoing transformation to sustainable societies. Over twenty professors and professionals were involved in conducting these courses, however there are still enormous needs to develop and extend these courses to meet the realities in many developing countries specially in Africa. This is also while considering the practical approaches that would be required in the implementation process. Particularly what regards the existing and emerging needs (UN-SDGs) in Africa for practical and appropriate policies and strategies.