Category: Other Natural Resources

Apart from water and energy resources (given in separate “Categories”) there are many other types of essential resources of natural origin, e.g. land, peat-lands, forests, mineral deposits, wildlife and biological flora and fauna, geological formation both on earth’s surface and the beneath. Major parts of these resources form our natural global biodiversity and needs protection measures through both formal and non-formal instruments.

Lake Victoria – The Paradox of Water Use and Abuse.

Lake Victoria, the second largest fresh-water body in the world and a water resource shared by three East African countries, is an enormous water resource facing collective mis-management on several levels. Lake Victoria is under considerable pollution pressures causing softly and steadily killing of its bio-diversity in addition to a real risk for drying-up from “global warming”.

An example is Jinja town, population of 300 000 people, that is rising after so many years of decline to claim the glory it lost so many years ago. However, the time is running out not only for the town and its population but for the whole water body of Lake Victoria. There is an accelerating pollution, abuse of environment and water resources due to limited access to waste and solid-waste treatment from industry, agriculture, household, rubbish damp and sanitation. Many industrial (more than 70 factories in Jinja only with high pollution incidents) , agricultural, household activities are releasing huge amounts of waste and pollutants to Lake Victoria.

The fishing, transport of people and goods to the main land and other public services suffer from random management, fragmented policies, and lack of collective protection and management actions. Fish population is declining as consequence of the damage the food-web dynamics of the lake and the natural functioning and metabolism in the lake because of heavy loads of nutrients, pollutants and siltation. Over-fishing of  the so-called “fish-of-choice” a small fish lower down in the food-web that is destroying the natural balance of the food-web and causing the collapse of the overall fish-population dynamics.

Poor infra-structures and water drainage systems from forest, agriculture, household and sanitation along with erosion and re-suspension of sediments due to man-made and animal activities are causing excess delivery of nutrients, accelerating “eutrophication” and decreasing levels of oxygen and thereby death and increasing prices of fish. The degradation of water quality will, also, force gradual and rapid increase in the proces of clean water.

Climate and Environment – Is the Nile Basin Heading to a Total Collapse?

The Nile Basin Countries are facing two major long-term and large-scale threats that can lead to the total collapse of the water resources in the whole Nile system, i.e. from the very sources at its origin “up-stream” to its final fate at the deltas “down-stream”.  These major threats are related to climate change “global warming” and environmental degradation because of waste and pollution (from energy, industry, agriculture and household). To deal with these major threats, i.e. mitigation and solutions, the Nile Basin countries need to develop and implement sustainable management strategies/policies. In this context, achieving sustainable socio-economic developments in the Nile Basin region, which indeed applies also to the other parts of the MENA region, requires coupling public awareness, education, science and technology programs to society, population and markets needs.

MENA and Nile Basin – WE-Saving Strategies Are Needed To Meet Future Challenges

The accelerating consumption of WE-resources “Water and Energy Resources” in the MENA region has huge negative long-term and large-scale impacts on achieving sustainable socio-economic developments in the whole region. The same threats are emerging in the Nile Basin region. Effective large-scale and long-term solutions are urgently required for developing and implementing WE-saving technologies in all society sectors and on all levels.

http://www.saudigazette.com.sa/index.cfm?method=home.regcon&contentid=20130418161903

Water Management – Is China Heading To Socio-Economic Collapse?

An important question for achieving sustainable socio-economic developments in any nation is: what is the limiting factor, is it water or energy? Currently, lack of access to clean water and sanitation kills children at a rate equivalent to jumbo jet crashing every four hours, this is equivalent to 3.4 million people die each year from water, sanitation and hygiene-related problems. Almost 1 billion people lack access to safe drinking water, mainly in the developing countries; the problem will still worsen as 70 percent of industrial waste is dumped untreated into waterways. The so-called emerging economies are, also, facing an accelerating threat from mismanagement of water resources that on the long run will be the most limiting factor for achieving sustainable socio-economic development.

China isn’t an exception, with its 22% of the world’s population, an access to only 5 percent of global water resources and an estimated 300 million people that lack access to safe drinking water. According to the Ministry of Water Resources in China, if China continues to consume and pollute at today’s rate, water demand will exceed supply in less than two decades. The past decades of rapid development, massive construction of infrastructure and huge industrial developments resulted in huge pollutant’s spill untreated into waterways. An estimated 50% of groundwater in cities, 77% of 26 key monitored lakes and reservoirs and 43% of 7 major river basins are considered unfit for human contact. Meanwhile, 19% of monitored rivers and basins, 35% of lakes are reservoirs are considered unfit even for agricultural or industrial use. These effects are related to China’s huge needs for energy and the associated “energy-water” nexus, e.g. 96% of China’s electric power requires water to generate, and 47% of electricity is consumed by water scarce provinces. Agriculture is by far the largest consumer of water at 62%, and the largest polluter, with pesticides and fertilizers responsible for about half the contamination of waterways. Soils are, also, facing great degradation, the average level of organic matter in soil is now 1-5% for northeastern China’s arable land, compared with 8-10% in the 1950s. A report published in 2007 by the World Bank and the Chinese government estimated the combined health and non-health cost of outdoor air and water pollution at approximately $100 billion a year, or about 5.8% of China’s GDP. Water pollution, meanwhile, worsens China’s severe water scarcity problems, with the overall cost of water shortages estimated at 1% of GDP.

Climate change has, also, negative effects in form of growing desertification and prolonged droughts in agricultural regions nationwide with impacts on drinking water and livestock as well as water levels in some of the countries major hydropower producing regions.

http://chinawaterrisk.org/resources/analysis-reviews/china-water-portrait-past-future/

Japan’s Energy Choice – Security Rather Than Needs

Global warming whether is a natural climate change process or artificial man-made climate impacts have enormous impacts on our choices to select secure and safe solutions of human energy needs. Also, pollution and waste products from energy production and use, including accidents and disasters, makes it difficult to keep land in tact for agricultural and for suitable household uses. Modern threats from climate, waste and pollution dedicate new realities for humans in terms of limiting the diversity for appropriate, safe and secure life on earth. The   road for achieving sustainable socio-economic developments becomes more difficult once we overload it with more “time-bombs”.

http://www.renewableenergyworld.com/rea/news/article/2014/05/fukushima-japan-rebuilding-communities-with-solar-commits-to-a-100-percent-renewable-energy-by-2040?cmpid=SolarNL-Tuesday-May20-2014

Top Challenges of 21st Century – Sustainable Use and Management of Water

Worldwide water governance has been challenged on several levels from local up to international though the existing forces are beyond human control, e.g. growing human population, increasing diversity in economic activities, enhanced competition on water resources, threats of climate disruption on water balance and availability. Sustainable management of natural resources is facing challenges in particular policy-making, the  implementation of laws, interpretation of international treaties and conventions. Examples are the trans-boundary water issues and disputes between upstream-downstream countries due to divergence in utilization of water resources for power generation, industry, agriculture and household uses. Water scarcity and security are typical issues in the MENA region and have caused disputes in the Nile Basin and Israel-Palestine area. This is, also, the case in other parts of the world, e.g. between India and Pakistan.

Other challenges are: affordable access to safe drinking water as a human right, e.g. sanitation and health issues in Sub-Saharan Africa; the needs for ways to measure access to improved water and unimproved water; the push to privatize water resources to drive efficiency and water trade; drought management and impacts of climate change. In global perspective water as a human right is not totally agreed upon, e.g. by the US and others international donors and what concerns affordability there are still more efforts to be done.

A panel discussion on contemporary challenges is given here on the sustainable use of the world’s freshwater resources, and the effectiveness of international law, e.g. international human right law, international environmental law and others, to meet existing challenges.

Lessons to be Learned – Most Polluted Air and Water on Earth

Among the most important indicators for life on earth are air and water qualities with poor qualities of air and water it becomes difficult, even impossible, to sustain life in any form. In some places in the world abuse of the natural resources, e.g. blind exploitation, production and use, have caused serious degradation and enormous damage, of natural environments. Exploitation, production and consumption are associated with environmental, ecological and human costs in form of “environmental, ecological and health degradation” and if such costs are not accounted for we will have negative sustainability balance. With gradual pile-up of such environmental, ecological and health debt, as is the case in the given examples, there would be no places on earth for suitable and sustainable life.          

http://www.mnn.com/earth-matters/wilderness-resources/photos/the-15-most-toxic-places-to-live/earths-orbit

Is Your City Sustainable? Top Five Most Sustainable Cities in the World.

The following are currently considered to be the top five most sustainable cities in the world:  VANCOUVER, CANADA; SAN FRANCISCO, U.S.; OSLO, NORWAY; CURITIBA, BRAZIL; and COPENHAGEN, DENMARK.

When it comes to implementing sustainable initiatives these cities are leading the globe in how that achieved and/or can achieve sustainable cities through using renewable energy and by cutting back on emissions. Among common sustainability characteristics of these cities (http://archive.rec.org/REC/Programs/SustainableCities/Characteristics.html) are:

leadership in using and developing renewables; green transport and traffic with low emissions; strict and green buildings with improved energy efficiency and ongoing LEED-certified green building projects); high marks for air quality and clean environment; waste management with efficient and high recycling rates; reserve high percent of land to green spaces, ongoing projects for efficient electric car traffic (Vancouver and San Francisco); protected forest, parks waterways, and agriculture land (e.g. Oslo, Curitiba); intelligent lighting adjusting intensity depending on traffic conditions and weather (Oslo); bio-methane from waste to power mass transit and heating; projects for cutting carbon emissions by 50 percent in coming decades with goals to be the world’s first carbon neutral capital by 2025 (Copenhagen); heating system powered by high percent renewable energy, mainly from biomass from residual waste with plans to reach 100 percent renewable sources for heating in most the cold regions in the world (Oslo); innovative program that allows people to exchange trash for transit tokens or fresh produce (Curitiba); projects to get 50 percent of the population on two wheels by 2015 by closing down some major roads to cars and developing an additional 43 miles of bike lanes and requiring all new developments to incorporate some level of vegetation into building designs (Copenhagen).

http://www.ecomagination.com/top-five-most-sustainable-cities-in-the-world

China-European Innovative Cooperation For Cleaner Cities

Chinese and European experts are cooperating, through meetings, conferences, roundtables and workshops, to gain valuable insights into clean energy. Government and business stakeholders highlighted their willingness to strengthen EU-China cooperation on energy security. Sustainability concepts to do more with less harm are developed in Europe for successful applications of the “reduce, reuse, recycle” hierarchy in industry. Based on this, it is possible to re-design products that, after their useful life, they can be much environment-friendly than what is possible today.

The China-Europe cooperation involves a “Demo Zone Initiative” that supports the city of Urumqi in technological innovation, low-carbon urban planning and circular economy by introducing successful EU experiences and technologies. Urumqi is one of the most pol- luted cities in China and the world because of heavy air pollution from industrial sulfur dioxide emissions. The dominant industries are petrochemical, metallurgical and textiles. The goal of the “Demo Zone Initiative” is to establish a win-win method to be replicated in other Chinese cities using a toolkit for urban action and district energy planning with local project financing and public-private partnerships (PPP).

The Chinese-European cooperation, by being inter-sectorial and inter-disciplinary, has synergistic effects that bring added value to education, public awareness, construction, industry, transport, environment, decision-making, capacity building, education, research and development.

Click to access EC2_CleanEnergyPerspectives_Issue6.pdf

China’s Energy Needs – The Water Resources Set The Roof for Energy Use.

In production strategies, more energy means more work gets done, it can also mean more conservation in energy can generate more work. The difference between these strategies is not only saving energy to get the same amount of work but it is the enormous saving of assocaited waste and pollution which in turn means more quality life, water for healthy food and conservation of environment. This makes the essence of modern sustainability, three-fold saving “energy-water-food” with enormous feedback on health, life quality and biodiversity. In this context, a  strategic question in the use of energy for production and living is: how much is enough in energy use and consumption? Can we humans use and consume as much energy as we wish and what are the limits? Are there any roofs for our energy needs for consumption, in this case what are these roofs, how they can be defined, monitored and implemented?

Indeed, global water scarcity started to be more pronounced is not because water on our planet is becoming less but it is because our energy needs for consumption are becoming not only unrealistically high but they are currently unaffordable and even inaccessible for future generations.

Click to access Water-Energy-Nexus-FinalReport_5.pdf

MENA – Impacts of Political Instabilities and Wars on Water Resources.

Since late 1040’s, water resource management in the MENA region (Middle East and North Africa including Algeria, Bahrain, Egypt, the United Arab Emirates, Iran, Iraq, Israel, Yemen, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Saudi Arabia, Syria, Tunisia, Qatar, the occupied Palestinian territories and Western Sahara “former Spanish Sahara”) faced several negative impacts as a result of asymmetric power relations, volatile political situations, political instabilities with periodic/continuous conflicts and wars. Under such conditions water policies were mainly focused on national short-term interests for securing supply and services with little, or even no, consideration to entire water cycle, e.g. the large-scale and long-term trans-boundary nature of the water resources in regions with shared rivers and/or shared groundwater resources. Furthermore, periodic conflicts and wars hindered developing appropriate economic-political instruments for efficient water-use and flexibility to manage long-term and large-scale supply and demand. Also, Integrated Water Resource Management “IWRM” for trans-boundary waters were lacking coherent policies of equitable and reasonable use, i.e. by being based on such factors as social and economic needs, size of population, access to other water sources, etc. The added-value to national and regional programs from several international donors involved in MENA water issues (the World Bank, UNDP and USAID) was therefore rather limited.

In addition to trans-boundary political conflicts, national governance is/was hampered by a lack of coherent laws, seemingly incompatible political interests, weak environmental legislation for over-exploitation of groundwater and over-consumption of water for irrigation with associated pollution and in-economic use of water. Pesticides, herbicides, industrial pollution, agricultural and household waste resulted in serious impacts on water quality, in addition to saline intrusion of the aquifers near the seas.  

Click to access Paper12_MENA_Water_Overview_2007.pdf

The Water Crisis in the MENA Region – Making the Most of Scarcity.

Water in the MENA region is integrated into the wider economic policies of the countries of the region and therefore water issues have to be addressed to multi-sectorial audience to bring about a broad reform within the current political and economic climate.  Indeed, MENA is using more water than it receives each year and most of the countries in the MENA region cannot meet current water demands. The situation is likely to be worse and per capita water will fall by half already before 2050, with serious impacts for the region’s already stressed aquifers and natural hydrological systems.

In coming decades, economies and population structures will force enhanced demands for water supply and irrigation, in addition to new needs to address industrial and urban pollution. Future management of water resources will be further complicated as the major part of the region’s water flows across international borders and climate change will introduce complex shifts in rainfall patterns. If the MENA region will not be able to meet these combined challenges the socio-economic consequences could be enormous, e.g. erratic drinking water services, more expensive desalination for cities and there would be needs for emergency supplies during droughts. Unreliable water resources, depletion of aquifers, service outages will cause stress on expensive infrastructure, depress farmers’ incomes, intensify local/regional conflicts with short- and long-term effects on economic growth and poverty, social tensions within and between communities, and increasing pressure on public budgets.

Post 1960s water policies of securing supply and services require switch toward better water management with consideration to entire water cycle and not the separate components, also use of economic instruments for water efficiency and flexibility to manage variations supply and demand. Changes in planning should include integrating water quality and quantity and consider the entire water system, promotion of demand management, tariff reform for water supply, strengthening of government agencies and stronger enforcement of environmental regulations. Also, shift from low-value uses to higher-value needs. Equal involvement of all stakeholders in water management policies including stakeholders outside irrigation, water resource management, and water supply and sanitation, e.g. within agriculture, trade, energy, real estate, land, finance, and social protection.

Reforms for sustainable socio-economic water management should involve: political and technical policies; effective interactions with non-water decision makers; accountability of government agencies and water service to the public as well as transparency for good and bad performance.

Click to access Water_Scarcity_Full.pdf

Renewables Changed Bitter AC-DC Rivals to Successful Marriage

Thomas Edison and his Direct Current “DC” technology lost the historical so-called “War of the Currents” to Alternating Current “AC” in the 1890s that was championed by the Edison rivals Nikola Tesla and George Westinghouse. The argument was AC was far more efficient at transmitting electricity over long distances.

Edison, inventor of light bulb and the world’s first DC power distribution system in 1882 was not totally wrong to insist on the needs for DC distribution grid. The technological advantages of AC over DC at that time dedicated the success and expansion of AC power distribution grids initially developed in 1886 by Westinghouse and Stanley with major inputs from Nikola Tesla. An AC power system allowed voltages to be “stepped up” by a transformer for distribution, thus reducing power losses, and then “stepped down” by a transformer for consumer use. The AC technology became gradually mature for large-scale grid up-scaling. However, the advances of DC power distribution for long-distance power transmission took a revival in 1954 when the Swedish company ASEA, predecessor of ABB, the Swiss maker of power and automation equipment, linked the island of Gotland to mainland Sweden with high-voltage DC lines.

However, by late 19th century science and technology was too blind to recognize the problems associated with the use of fossil fuel, e.g. coal, oil and gas, for production and distribution of electric power. During the 20th century it has been an accelerating pile-up of threats not only from fossil fuel consumption what regards the green-house impacts on climate, but also the associated impacts on water resources from fossil fuel production in form of enormous and irreversible environmental pollution and degradation of ecological and water qualities.  With birth of renewables, e.g. solar, wind, geothermal, hydropower and wave power, and the continuous advances in associated DC and smart technologies the advantages of DC distribution grids became once more apparent. They are economic for high-voltage and high-capacity runs over very long distances, they are better suited to handle the electricity produced by solar and wind farms, which starts out as direct current.

Follow the emerging needs for transformation to renewables and the implementation of more sustainable management policies.

http://www.nytimes.com/2011/11/18/business/energy-environment/direct-current-technology-gets-another-look.html?_r=1&

China’s Renewable Challenges for Efficient and Optimized Grid

China’s need for energy to serve its citizens and industries will accelerate tenfold in the period 2000-2035, i.e. from 1TWh to 9.6 TWh. Until now the share of renewables in China’s energy mix is about 17% while the major part of its energy, about 80%, is provided through fossil coal.

China’s challenges are related to its relatively very young renewable programs, and that the regions of highest energy demands are not matching China’s geographic distribution of its renewable energy production. Another challenge for China is the integration of its regional grids to a more efficient and optimized grid especially with consideration to the additional emerging renewable energies and the associated needs for storage. With these challenges a clear energy saving policy is needed for integrating renewable energy into China’s system. This is not an overnight and easy task especially if sustainable policies have to be taken in consideration for the reduction of greenhouse gas emissions which will remain to be one of the most serious difficulties for China not only from climatic view point but also from environmental and air quality prospective.

http://www.managementism.com/2012/integration-of-renewables-in-china/

Renewables – European Challenges While Moving Towards A Super Grid.

Creation of a single electricity market in Europe has been moving in a positive direction. But, it is still a long way to go, particularly what regards the connection and integration of national electricity markets, the physical interconnections between Member States, and the promotion and facilitation of cross-border market-balancing. The same is true for the coordination of investment in generation, transmission and storage capacity. EU targets in areas such as climate change and energy security are additional challenges for achieving a single European electricity market. Renewable need to contribute to security of supply just as fossil fuel operators need to contribute to climate protection

In a single European energy market, the increasing penetration of renewables must be accommodated in a sustainable matter and this would require special considerations from the Member States. With increasing weight of renewables, the overall stability of the grid will certainly be ruined. The market is facing new challenges with the facilitation of self-consumption and peer-to-peer energy exchanges within distribution networks. Apart from technical and regulatory issues, the answers in every country are likely to differ because of the differences in energy mix and societal models. In this context, true pan-European market solutions can be favored over additional and scattered regulatory measures, as suggested below.

http://www.renewableenergyworld.com/rea/news/article/2014/04/moving-towards-the-european-super-grid?cmpid=WNL-Friday-May2-2014

Iran – The Untold and Complex Story of Iran’s Nuclear Ambitions

The story of Iran’s nuclear ambitions to have nuclear power started already in the 1970’s upon recommendation from Ford’s administration of the US. The US, France, Germany and the UK though that Iran can be a good client for the nuclear technology and the UK started collaborating with the Shah’s of Iran on his development of nuclear power. However, the situation changed after the revolution in Iran with withdrawal of the west from further collaboration with Iran what concerns the development of nuclear power.

Under pressure from finite fossil fuel reserves and scrutiny from the West, Iran’s nuclear program has had a difficult road. Here is the story of Iranian nuclear energy told from the other side.

“Iran has tried its best to have a pragmatic approach, not an ambitious approach”, claims the country’s ambassador to the IAEA, Ali Asghar Soltanieh. A climate of suspicion and hostility has historically smothered any meaningful discussion of Iran’s right to nuclear technologies. The West accuses Iran of creating a ‘confidence deficit’ by pursuing a clandestine programme of enrichment; Iran sense hypocrisy, and claim to be singled out.  Ultimately, all parties acknowledge that a system that enshrines the right of the powerful to bend the rules is unsustainable. “The whole of the non-proliferation regime has elements of double-standards built into it”, concedes David Hannay, a member of the House of Lords. But will this consensus signal a move beyond the rhetoric to purposeful negotiation? “Iran has an opportunity to become the good boy of the world.”

One central issue what concerns the globalization of high-tech industries, and other emerging sustainable technologies, is how would we achieve sustainable socio-economic development around the world that involve secure and safe use of clean energy and water resources. However, there are many important political challenges what regards raising public awareness, promotion of supporting education and research programs that can solve society and populations needs. In this context, stronger engagement of all sectors and stakeholders are required for the conservation and protection our natural resources.

South Africa’s Sustainability Challenge: Food; Energy and Water

By 2030 South Africa will have 60 million people, i.e. more than double of today’s population, to feed. Today’s water and energy resources are already used up for living and providing food. The only solution is SUSTAINABLE planning and recognizing the way these three resources, i.e. food, energy and water, are INTER-CONNECTED.  We need sustainability as much as sustainability needs us.

http://m.youtube.com/watch?v=MGNxRZD4Uxs

Middle East – Railways for 250 Billion US Dollars

Follow the mega constructions in the Middle East region for the transformation to more a sustainable future where railways provide the most environment friendly and sustainable large-scale and long-term transportation system. Mr. Loay Ghazaleh, Advisor at the Undersecretary Offices, The Ministry of Works, Bahrain, describes in a comprehensive, pedagogic and innovative slideshow the ME “Middle East” Railway Development and PPP “Public Private Partnership” Financing Framework over the next ten years. A major shift in the transport sector of the Middle East with enormous investments that can bring about huge feedback advantages regarding mobility of goods and citizens.  

ABSTRACT. The Middle East has allocated nearly $250bn to various railway projects over the next 10 years with ambitious plan to build around 67,000km of railway tracks throughout the region. The region has the opportunity to build the world’s most advanced passenger and freight transport systems. The presentation touches on all aspects of railway development and strategies in the region including different Public private Partnership (PPP) models and financing / funding advice to better develop rail projects as a sustainable means of transport.

http://www.slideshare.net/mobile/loayghz/me-railway-development-ppp-financing-framework

Canada Oil Sands – How Sustainable is Sustainable?

 

Increasing energy demands and pressures on Conventional Light Oil “CLO” of the Eastern Hemisphere (85% of the global inventory) have shifted the focus to Unconventional Heavy Oil “UHO” and Conventional Tar Sands “CTS” deposits around the world. The major part of “UHO” is in the Western Hemisphere (69% of the inventory), mainly the USA, while the majot part of “CTS” is being found in Canada. We have to keep in mind that the world inventories of UHO” and “CTS” may, indeed, exceed the global inventories of “CLO”.

Unconventional oil sources and oil sands are created in the same way as conventional oil—that is, through the combination of organic material, heat, and pressure. The main difference between the two is their ability to move underground. Conventional oil migrates upward due to its buoyancy. This oil moves through pathways in the underground rock in its fluid state and becomes trapped between impermeable layers of rock. Unconventional oil and oil (tar) sands, meanwhile, is formed in sealed spaces of rock, or being mixed with sand, and is not able to move up; it therefore remains in the source rock/sand, trapped in pores or unconnected pores. Unconventional oil and oil or tar sands are therefore produced and extracted using techniques other than conventional method used in Conventional Oil industries. Governments across the globe are investing in unconventional oil sources due to the increasing scarcity of conventional oil resources. 

Due to the different nature of accumulation and existence in underground formations and difficulties associated with production/extraction of unconventional oil and oil sands there are multiple of additional environmental threats and climatic impacts. Production and extraction of unconventional oil and oil sands consume much more water, have enhanced negative impacts on the environment in terms of produced waste, contamination and pollution especially what regards degradation of aquatic life, eco-systems and bio-diversity. Moreover, carbon dioxide emissions from the production and extraction of unconventional oil and oil sands are relatively higher, up to 20%. Indeed, the climatic and environmental (http://blogs.worldwatch.org/revolt/unconventional-oil-implications-for-the-environment-and-greenhouse-gas-emissions-2/) impacts of unconventional oil and oil sands are not fully understood and consequence assessment analyses are fragmentary, incomplete and far from being representative especially what regards the large-scale and long-term impacts and threats.

http://www.greenparty.ca/sites/greenparty.ca/files/attachments/a_comprehensive_guide_to_the_alberta_oil_sands_-_may_2011_-_last_revised_march_2012.pdf

Lessons to be learned – The Sustainability Program of North Ireland

While there are no “standard maps” for achieving successful sustainable socio-economic developments everywhere in the world, yet we can learn from exiting strategies and solutions. Naturally, nations around the world have own conditions, structures, needs and may exist in different stages of development with complex internal and external political, economical and trade relations. Assessing the existing models and strategies helps formulating short and long-term roadmaps that are appropriate and suitable to the socio-economic needs and conditions. Successful socio-economic developments can’t be based on random actions and have to follow robust strategies emanating from effective, collective and coherent interactions between all sectors and on all levels. In this context, cloudy and conflicting interesting “within and between” nations can be major obstacles for achieving sustainable socio-economic developments.

An example on how to build national roadmaps for bring about successful socio-economic developments even under economic constrains is given here.

http://www.sustainableni.org/index.php