Category: Transport & ICT

Transport is movement of persons, animal and goods from one place to another where convenience is a primary request in long-distance transport. This applies to all society sectors and involves the necessary logistics from information flow and material handling to transportation and security. Complexity of transport and logistics is, further, effectively and economically managed by automated by dedicated software through modern ICT-technologies. Problems within transport (road, sea, air) have been of major technological challenge especially regarding safe, effective and economic transportation around the world.

Modern ICT “Information and Communication Technologies” have revolutionized and shaped our life style, culture and communication on all levels and sectors. The application of computers and telecommunications equipment to store, retrieve, transmit and manipulate data has far unlimited global benefits not only in business, enterprise, entertainment and education sectors, but generally in all disciplines of science and technology. In this context, ICT has been indispensable for improving technology and industry, including transport and logistics especially what regards control and automation. With the increasing coupling and integration of ICT technology in all society sector and the recent advances in “cloud computing” and “mobile apps” there are many new developments to expect in the future especially what regards achieving sustainable socio-economic developments, e.g. effective use, recycling and management of natural resources.

South Africa’s Sustainability Challenge: Food; Energy and Water

By 2030 South Africa will have 60 million people, i.e. more than double of today’s population, to feed. Today’s water and energy resources are already used up for living and providing food. The only solution is SUSTAINABLE planning and recognizing the way these three resources, i.e. food, energy and water, are INTER-CONNECTED.  We need sustainability as much as sustainability needs us.

http://m.youtube.com/watch?v=MGNxRZD4Uxs

Middle East – Railways for 250 Billion US Dollars

Follow the mega constructions in the Middle East region for the transformation to more a sustainable future where railways provide the most environment friendly and sustainable large-scale and long-term transportation system. Mr. Loay Ghazaleh, Advisor at the Undersecretary Offices, The Ministry of Works, Bahrain, describes in a comprehensive, pedagogic and innovative slideshow the ME “Middle East” Railway Development and PPP “Public Private Partnership” Financing Framework over the next ten years. A major shift in the transport sector of the Middle East with enormous investments that can bring about huge feedback advantages regarding mobility of goods and citizens.  

ABSTRACT. The Middle East has allocated nearly $250bn to various railway projects over the next 10 years with ambitious plan to build around 67,000km of railway tracks throughout the region. The region has the opportunity to build the world’s most advanced passenger and freight transport systems. The presentation touches on all aspects of railway development and strategies in the region including different Public private Partnership (PPP) models and financing / funding advice to better develop rail projects as a sustainable means of transport.

http://www.slideshare.net/mobile/loayghz/me-railway-development-ppp-financing-framework

Transformation to Clean Energy – The Canadian Challenges

The world is currently facing growing pressures for transformation to clean energy in order to mitigate the environmental and climatic impacts of traditional energy sources. For Canada transformation to clean energy is still a big challenge, however it represents a unique opportunity for traditional energy producers and clean energy producers to team-up. These players have to come-up with a coherent task with the government to assure further development of traditional sources of energy in environmentally responsible manner while at the same time start grow more quickly to clean electricity sector. Resolving these issues will make it possible to meet the challenges for the transition to clean energy.

Similar challenges for countries with high carbon dioxide emission per capita, also, exist around the world but not all the countries have the same possibilities and resources for full and quick transformation to clean energy because of necessary huge capital investments, access to the required high-tech infra-structure/expertise and above all the political will. However, countries with low carbon dioxide emissions per capita, e.g. in Africa and South America, have to implement policies and encourage promotion of clean energy production while building up their technology, industry and production sectors.

http://www.pembina.org/pub/2406

Lessons to be learned – The Sustainability Program of North Ireland

While there are no “standard maps” for achieving successful sustainable socio-economic developments everywhere in the world, yet we can learn from exiting strategies and solutions. Naturally, nations around the world have own conditions, structures, needs and may exist in different stages of development with complex internal and external political, economical and trade relations. Assessing the existing models and strategies helps formulating short and long-term roadmaps that are appropriate and suitable to the socio-economic needs and conditions. Successful socio-economic developments can’t be based on random actions and have to follow robust strategies emanating from effective, collective and coherent interactions between all sectors and on all levels. In this context, cloudy and conflicting interesting “within and between” nations can be major obstacles for achieving sustainable socio-economic developments.

An example on how to build national roadmaps for bring about successful socio-economic developments even under economic constrains is given here.

http://www.sustainableni.org/index.php

Would Algae solve our Food, health and Energy Needs?

Our understanding of algae, their unique and rich diversity, is shifting more and more towards finding industrial applications for production of useful products, in particular, food (human food, fish food and animal food), energy and farmaceutical products. There are known methods and tools to extract oil and other valuable products from algae, also to change the genetic content and chemical composition of many algae.

Many and many organizations give lots of money for research for commercialization of algae. Research takes is typical path fuelled by society needs, human hopes for prosperity and fears from environmental threats. In this amazing journey of what we are right now and where we are heading to, there are several important facts to be known, e.g. benefits and threats. There are, also, key interests in understanding the potential of artificial photosynthesis as a new path, not yet fully understood, for production of energy.

Algae are “biochemical reactors” that can recycle carbon to produce organic compounds in different forms, which indeed is the origin of all the gas and oil reservoirs around the world. Multi-hundred-million dollar industries have invested in many products, e.g. sushi wrap, oils, dental impression, ice cream thickener, cosmetics, medical products, plastics… etc. They still invest more and more money for production of energy-rich food, biofuel from algae and use of wastewater to grow algae as well as for the extraction of other useful products like coloring agents and anti-oxidant, agro-culture business for production of food in the fish and shellfish industries.

Basic research is needed, and even imperative, to solve central bottleneck in algae processing technology ranging from cultivation, harvesting, extraction of desired products, processing and refining. Micro-algae are known to grow very fast and there is commercial potential in industrial microbiology where molecular biology in combination with aquaculture and marine farming can yield hybrid and novel technologies. Unlike industrial small-scale microbial technologies, e.g. cheese, beer, alcohol that are based on “closed systems” trying to cultivate algae on large-scale, i.e. in open systems, is a great challenge. Algae are now looked upon as the most sustainable known potential source of biofuel. The challenges are transferring the many different types of small-scale bioreactors to open systems for growing algae at large scale. Up-scaling of algae-based technology leads to emergent issues that are not fully controlled, e.g. competitor algae, predators and diseases (bacteria and viruses). Up-scaling to large-scale open systems, therefore, requires solving a wide-range of difficulties and threats including those arising from varying weather conditions, e.g temperature, and much work is still needed.

China’s Yangshan – The World Biggest Mega Port.

220 AD The Great Wall, 1420 AD The Forbidden City, 1997 AD Three Gorges Dam and 2002 AD China does again with the biggest construction project on earth in the middle of the deep ocean. That is to meet the 21st century where China’s export-import trade is exploding by nearly 30% each year and to support the heavy traffic from Yangtze River where there is considerable sedimentation of silt where it meets the ocean.

This China’s Ultimate Mega Port, The Yangshan Port, is one of the busiest cargo facilities on earth with the world biggest import-export trade. It has one of the most advanced and cutting edge control system in any container port around the world. It is 32 km off-shore and 15-20 meters deep, a 20 km cargo-port that can handle 25 million shipping containers in one year, i.e. 70 000 in just one day and to built it required thousand of million cubic meters of soil. It is built for loading and unloading gigantic containerships and linked to the main land China by the second world largest bridge.

WHO – Air Pollution Is World Biggest Health Risk – Air Quality Guidelines

Air pollution has become the world’s single biggest environmental health risk. According to WHO it is linked to around 7 million death or nearly one in eight death in 2012. The new figures are more double previous estimates and suggest that outdoor pollution from traffic fumes and coal-burning, and indoor pollution from wood and coal stoves, kill more people than smoking, road death and diabetes combines.

The document is WHO’s Air Quality Guidelines Global Update 2005. These Guidelines offer guidance to policy-makers on reducing the effects on health of air pollution for the four most common air pollutants – particulate matter, ozone, nitrogen dioxide and sulfur dioxide.  Also, issues affecting the use of the guidelines in risk assessment and policy development.

This document contains Part (1) Application of air quality guidelines for policy development and risk reduction; Part (2) Risk assessment of selected pollutants (Particulate matter, Ozone, Nitrogen dioxide, Sulfur dioxide).

Click to access E90038.pdf

Air Pollution Is An Increasing Global Threat to Public Health and The Environment

Air pollution is a worldwide problem especially in many big cities and industrial areas around the world. Emission of fine particulate matter (e.g. aerodynamic diameter ≤ 2.5 µm; PM2.5) , chemicals (e.g. biogenic VOC) and pollutants (e.g. heavy metals), and associated photo-chemical reactions (e.g. production of tropospheric ozone) in the atmosphere as well as in-cloud interactions (e.g. acid rain) experienced dramatic changes since the industrial revolutions. Concentrations of hazardous pollutants in global atmospheric air masses, dry and wet precipitates have been subject to gradual increasing reaching harmful levels for air-quality what regards human health (e.g. lung cancer, mortality) and the environment (e.g. negative impacts for forests and vegetation and quality of life in aquatic eco-systems) in many places around the world.

Climate change influences air quality through several mechanisms, including changes in photochemical reaction rates, biogenic emissions, deposition/re-suspension, and atmospheric circulation. Several techniques/approaches were used in such studies including atmospheric chemistry, climate model inter-comparison, high-resolution satellite observations together with a global atmospheric models and extensive compilation of surface measurements to better represent global air pollution exposure.

http://www.salon.com/2013/09/23/infographic_shows_air_pollution_deaths_around_the_world_newscred/

Tectonic Shifts in Global Economy – How Would World Economy Look Like in 2050?

The world is experiencing tectonic changes in terms of population, economy, production, services and technology. The world in the year 2050 will not any longer be as it used to be in the past decades.

The world population will grow from 6 billions in the year 2000 (one billion in the developed world and five billions in the developing world) to 9 billions in the 2050. One hundred million out of the three billions of the global increase in population will go to the developed world, while the developing countries will increase by 2.9 billions. This is a dramatic shift in world population in the coming five decades only, i.e. an increase from 6 to 9 billions.

The other consequential change is, by the year 2000, the developed world (one billion people) had 80% of the global economy while the developing world (five billion) had the remaining 20%. But, by the year 2050, the developed world will have only 35% of the world economy, while the developing countries will have 65% of the global economy. So, the 80% vs 20% of global economy of the year 2000 will be change to 35% vs 65% by the year 2050. This is just turning the world on its head in terms of the world that used to be in the past decades. This dramatic change in the structure of world economy is being driven by the development in global population and the fast transfer of modern technology to the developing countries.

You can imagine how such monumental economic shifts mean to the young generation world over. This is a change of enormous importance where India and China by the year 2050 will constitute 50% of the global GPD, this is a monumental switch in terms of economical power.

In the year 2000, one billion middle class people were in the rich countries and half billion people were in the developing countries. By the year 2030, 2 billion middle class people will be in Asia (one billion in China by 2050). Africa will grow from 850 millions people in 2000 to two billions people 2050. By the year 2050, the average income in Africa will be 2000-3000 dollar per capita, for China and India will be between 30 000 and 40 000 dollar per capita, and for the countries in the rich world (US and Europe) will be between 90 000 and 100 000 dollar per capita.

Africa is a continent that is not any longer isolated, it is not a place where people are not well informed as information is passing and moving very quickly. Much trade and business in China and India is geared towards Africa.

These tectonic changes have monumental impacts on the young generation and they have to think very carefully how to face the global transfer in economy, production, services and technology. Education figures for the year 2007, tell us that 110 000 Chinese and over 100 000 Indians were studying in the US, while only 11200 Americans were studying in China and 2800 Americans in India. But, these figures will experience dramatic changes in the future because the mentioned major shifts in economy, production, services and technology.

The western countries were able to stay ahead because of (1) manufacture and that was taken away and moved to Asia; (2) service industries that first moved into the western countries but is moving out again to Asia by their gradual dominance in the service sectors; (3) technology where the west were able to stay ahead, but now the technological advance is being shifted as well to Asia. The challenge is now what is left for the west to do??

Must Be Watched! Fukushima – Turning Nightmare and Disasters To Safety and Security

The dream of any nation is to provide its population with safety and security especially in most critical situations with severe disasters, tragedies and collective nightmare arising from fear, insecurity and uncertain future. The nuclear disaster and the national tragedy from Fukushima nuclear accident in Japan demonstrated how collective efforts, the neat national planning along with continuous and intensive hard-work brought about safety and security for almost all the population in Japan.

An amazing awareness and responsibility on all levels for the DE-COMTAMINATION of every single inch or centimeter of land, houses, school, hospitals, roads, trees and practically all environmental compartments. A national DE-COMTAMINATION strategy if followed by other nations much of pollutions and waste problems can be solved. Successful sustainable management is about providing future generations with secure and safe living conditions, it is a collective discipline, awareness and responsibility from all for all and by all including preparing and fostering future generation for how to handle national disasters and severe tragedies.

Cleaning up Fukushima

Emerging Sustainable Technologies are Directed Towards Coastal Regions

 

Increasing pressures on natural resources, in particular availability, accessibility and affordability of Water and Energy “WE”-resources, require Sustainable Management Policies that consider shaping and integrating Sustainable Technologies to meet the growing needs for large-scale and long-term transformation to New Sustainable Life-styles. Unlike, in ancient civilization where population settlements were created at/around fresh surface-water bodies, e.g. rivers, lakes and deltas, future settlements are likely to grow faster at coastal regions “Hydroponic Coastal Colonies” and non-traditional living areas with limited fresh-water resources. Agricultural production may not require land to the same extent as in traditional farm communities; modern technology will allow more Sustainable Cities to grow on coastal areas as well. However, climate change threats for increasing sea-water levels have to be taken in consideration, what we have learned from the past safety and protection measures are always part of any successful socio-economic developments. The future is bright by innovation and not by imitation.

Shaping and Integrating Modern Technologies for Sustainable Cities and Global Food needs

By Chemist/ Safwan Elfar, Qatar

Social Media as Powerful Early Warning Instruments

 

Social media are powerful and effective early warning instruments especially in cases that require quick and cost-effective health interventions in case of epidemics of infectious diseases. These instruments become very convincing by being combined with relevant health assessment analysis of diseases and risk factors.

http://wordpress.com/read/post/id/3956116/7061/

“Elements” of Life and the Magic Number Four

Life on earth, and its origin, has been a puzzle and still. Classically humans believed that the essential “elements” upon which the constitution and fundamental powers of anything are based are: Earth, Air, Fire and Water. In the past the concept of Energy was unknown to humans though fire was very much needed for life. It is as early as in stone-ages where humans discovered how to make fire, it came by accident. People at that time both appreciated and hated fire, however from that time humans went on to explore the whole range of energy forms, including production and consumption. Full benefits of Water and Energy resources for life on earth required/requires the other two “elements”, i.e. earth and air. However, there are specific requirement for the properties and qualities of earth and air for the life to exist. Even for humans, the full benefits of energy and water were/are only possible through earth and air with given specifications and qualities.

Through science and technology the classical four “elements” were developed and expanded to an enormous amount and spectra of knowledge that allowed all possible application and inventions. The most common feature of modern educated and intelligent humans and stone-age illiterate humans is how to solve the dilemma of mastering energy and water in sustainable matter. The difference is illiterate and ancient humans discovered energy “fire” by an accident but intelligent and modern humans will, at some stage, consume all energy resources on earth to a level that makes further life on earth difficult.  Are we gradually moving to stone-ages?

https://www.youtube.com/watch?v=ChxvN4WjxWg&feature=youtu.be

Distribution of World Energy Resources – Sources and Quantities

Knowledge on the World Energy Resources “WER” is much more important to know as compared to the World Water Resources “WWR”. In both cases management policies in terms of quantity and quality are IMPERATIVE.

While knowledge about Climate Change is essential for implementation of sustainable long-term and long-term management policies of the Water Resources, there are relatively more aspects to be considered for the sustainable management of the Energy Resources. Humans cannot manipulate “WWR” or Global Water Resources “GWR” in terms of quantity. What we get, we will get, and we can do nothing about it. However, regarding the quality of GWR it is the responsibility of humans to keep track on quality at all levels and on different scales, i.e. in terms of location and occasion “spatio-temporal scales”. So, what regards “GWR” management policies, technology is primarily coupled to consumption priorities of sectors, stakeholders and users as well as waste and pollution issues with consideration to climatic issues.

Management of “WER” involves production, consumption, and waste and pollution issues taking in consideration sectors, stakeholders and users. But “WER” require global players for import-export of both raw material and processed energy as well and in both cases waste and pollution aspects are involved. The dynamic balance of fossil versus renewable energy resources are very much technology related. Even in this case, Climate Change is becoming an important factor regulating how the dynamic balance of fossil versus renewable energy should look like, i.e. on “spatio-tempral” scales.

http://www.worldenergy.org/data/resources/

Whaling Industry in Early 1900 and Beyond.

I came a cross an old whaling film (in two parts) aboard U.S. ship “The Viola” from 1916 describing the hard working condition during the early years of the growing industrialization. The ships used for whaling were built even earlier, i.e. around 1850 or so. The whaling work required too much work, labor and the tools and techniques used at that time were simple or even primitive as judged by current western standards. However, these were the conditions and what was available at that time. This in addition to too long fishing journeys for little outcome; this is how people worked hard for getting their food and income at that time. All modern industrial technologies, including film-industry and ICT-based machinery that replaced difficult, ineffective and time-consuming man-power were gained mostly after WW-II, i.e. the later part of 1900. However, human struggle to get enough, affordable and healthy food will never end as there are always new pressures, threats and challenges. Education and research are always needed for better conservation and management policies.

(Part 1) https://www.youtube.com/watch?v=iWA4HDFASAo&feature=youtu.be

(Part 2) https://www.youtube.com/watch?v=w_qebW9vLzI&feature=youtu.be

Victoria Falls and its wildlife as Viewed by A Local fisherman

Victoria Falls is one the most beautiful waterfalls in the world. The wildlife and biodiversity of Zambezi River, feeding this spectacular waterfall, are unique in many aspects, i.e. unlike the other most famous waterfalls around the world.

However, what is the perception of a local fisherman, after being fishing for 69 years in the river, of wildlife and what does water and rain mean for the population and the animals in this enormous eco-system and life-factory.

Our understanding of the natural resources and life in rural Africa, and the habits, culture and needs of the local inhabitants is crucial for shaping future sustainability policies and for integrating rural regions with the increasing trends of urbanization in Africa.

https://www.youtube.com/watch?v=7RKFqqwhtGs&feature=youtu.be

Food-Energy-Water Nexus

Feed-Food-Fibre-Fuel from agriculture, forest and farming are all dependent on landuse and water resources. However in arid and semi-arid areas, unlike temperate regions, water scarcity can be a major problem and energy are frequently required to use underground water for agriculture and farming. In all cases, i.e. even when water is available, waste from agriculture, farming and associated household applications can result in degradation of water quality. Energy is, always, required for treating used water and because of this “food-energy-water” are usually treated as essential policy-components for achieving sustainable socio-economic developments in many countries around the world and whenever necessary. This requires long-term and large-scale coordination of inter-disciplinary and inter-sectorial solutions with involvement of all stakeholders both on vertical and horizontal levels. These policies and solutions require appropriate public awareness, capacity building and skilled expertise with the suitable monitoring and management infra-structures and assessment instruments. These combined actions will have long-term positive feedback on economy, affordability and accessibility of food. An example on the interplay between food, energy and water is given below.

http://news.nationalgeographic.com/news/energy/2012/04/120406-food-water-energy-nexus/#!

Sustainability – A “Metanoia rather than Affluenza”

The journey of science, to understand the very secret of the universe and the natural evolution of life, and the behavior of humans and the feedback impacts of technology on the fundamental drivers of life and its quality, never stops. A journey that fuels itself to complete Darwin’s “Unfinished Business”, and to search about a new vision of nature, a “Metanoia rather than Affluenza”. A journey directed by science and technology for sustainability and preservation of life, rather than for consumption and collapse of life, would help nature to resume rather than to relapse from the natural path of evolution.

https://www.youtube.com/watch?v=Ff1Z8nGGebs&feature=youtu.be

Visit, Share and Contribute in Promoting Global Sustainability.

A new BLOG about applied global sustainability is available now. We will be gradually working with developing, interacting and promoting all issues relevant to applied global sustainabilty. With the NEW YEAR of 2014, you are kindly invited to visit, share and contribute in this BLOG.

ABOUT Sustain-Earth.com

ABOUT Sustain-Earth.com