Category: Economy & Investment

Capital (economics) is used in production of good and services. In this context a growing number of accounting systems have recognized the concept of taking into account natural and social capitals “Triple Bottom Line”, i.e. including ecosystems and social relations in the definition of capital. Control of capital is a primary mean for creating and maintaining wealth though it may depreciate in the production process (physical or manufactured capital) and consumption (natural or non-manufactured capital). Capital is an input for in the production process, and thereby homes and personal autos are regarded as durable goods rather than capital. In economic systems, investment is the accumulation of newly produced physical entities, e.g. factories, machinery, houses and goods inventories. In finance, however, investment is using money with the expectation of capital appreciation and interest earnings.

For achieving sustainable socio-economic developments the “Triple Bottom Line” is expected to create and maintain long-term and large-scale economic and financial stabilities with consideration to successful conservation of the global natural resources.

Quality of Certified Food – How Good Is Good?

We leaned in our daily life experiences that “no fire without smoke”. Indeed, many of us started to lose confidence in food quality and have observed on many occasions disappointing situations. That doesn’t come without reasons or surprises as we are already familiar about many environmental abuses on several levels. In additions to this, violations of rules and quality guide-lines are existing worldwide as economic terms in production and services have sometimes higher priorities than quality standards. 

Here are some few examples why our food quality can be questioned. I personally have experienced number of violations even in best shops in Europe (in this case very few) where bread and cheese can be suspected for exposure to rat droppings, see for example (http://www.raising-happy-chickens.com/rat-droppings.html). 

In developing countries sanitation and poor water quality can pose additional threats in food production as the risk of exposure of food to insets and certain dwelling animals, e.g. rats,  can be high. 

Here are some warnings about existing problems in processed food even through legally accepted quality guide-lines (http://youtu.be/T75ULFUgEPk).

  

Sustainable Urbanization – ICT, Green Materials & Sensors for Automation and Control 

Sustain-Earth.Com will expand on issues of relevance for the accelerating importance ofICT “Information Communication Technology and Green Materials. Sustainability in global urbanization requires using wide-range of “Sensors for Automation and Control” both within city-systems, e.g. Individual buildings and city-services, and between internal and external city-systems, i.e. on regional, national and global levels.

Here is an example of early implementation of the building automation systems (BAS) into the development of the construction documents results in a highly functional “systems” approach. BAS requirements are continually changing as building owners expect more from their systems in the areas of energy management, safety, security, interoperability, lighting, and maintenance. BAS specialists ensure that each building automation delivers optimum performance and operation at a competitive price.

More examples and solutions will be given in the future where local and regional weather and climate as well as environment and social-economic conditions will require an increasing complexity of sensor systems and ICT-solutions especially what regards coupling rural and urbane regions.

(http://www.aeieng.com/services/instrumentation_and_controls/building_automation.php)

Would 3D Printing Revolutionize Global Constructions and Building?

ICT and CABD “Computer Aided Building and Design” are moving more and more towards enormous wide-spectra of constructions and applications from nano-structures to massive buildings on landscape scale.

In all future applications the needs for sustainable building and associated materials, e.g. SuperGreen cement, that integrate the three pillars of sustainability, environment, economic and social is IMPERATIVE. Follow http://sustain-earth.com to know more.

http://www.aljazeera.com/indepth/features/2014/10/3d-printing-future-disaster-relief-20141016825642208.html

SuperGreen Cement – The Role Of Ancient Civilizations In Shaping Modern Technologies

In all human civilizations building and constructions were central components in human life with continuous struggle for sustainable comfort living in harmony with nature. As the concept of sustainability did not exist in the same way as we know it today, ancient solutions were based on practical use of naturally available materials in combination with the sun as source of heat and thermal energy. Climate/weather conditions played major rules in building and construction and people adapted living to their environment.

The Egyptian Pyramids, temples and living rooms were built more than 4500 years ago with zero energy consumption, zero carbon dioxide emissions and no toxic waste. How the Pyramids and those buildings were built is still matter of speculation and debate. According to historical data ancient Egyptians built the Giza Pyramids; Khufu, Khafre and Menkaure in a span of 85 years in the 26th century BC. How such sustainable technology was mastered is still a mystery what regards saving energy, water and environment.
Most of current problems today are related to implementation and use of technologies whether or not suitable for the environments. Because of this, the conform of modern technology comes with very high price in terms of economy, environment and above all an enormous loss of cultural and locally based building codes that developed throughout several generations. Only, in few cases where enough resources and investments exist there are successful examples, however it remains to see how such solution can be expanded on larger scales. The “world’s first carbon neutral zero-waste city” is slowly becoming a reality of epic proportions. The prototypical sustainable city, Masdar, is currently under construction twenty miles outside of Abu Dhabi. When finished, the city will be powered entirely by renewable energy, making it one of the world’s most sustainable urban developments. The city has its own sustainability-driven research center, which is devoted to the development of alternative energy (http://youtu.be/FyghLnbp20U).

Among most recent advances in building material is a new type of cement that is based on Pozzolan, which can be found in nature from volcanic deposits. Also, industrial waste from iron and power plans can be recycled and used in producing green cement. Green cements, as compared to OPC “ordinary Portland cement”, are very energy and water saving, environmentally much more friendly with no waste remains and no emissions of GHG. Also, have enormous advantages especially what regards production cost, mechanical properties, duration and maintainance. Modern technology can produce sustainable building materials, green cement, for erection of complicated structures that have excellent durability but in much much faster time as compared to ancient civilizations. Currently, the best possible sustainable building materials can bring about energy saving of more that 90% with very near zero carbon dioxide emission and zero waste remains.

To understand the importance of Pozzolan in modern technologies for production of green cement one has to back 2000 years ago. The Romans at that time started making concrete but it wasn’t quite like today’s concrete. They had a different formula that resulted in not as strong as our modern concrete. Yet structures like the Pantheon and the Colosseum have survived for centuries, often with little to no maintenance. Geologists, archaeologists and engineers have arrived a key component in the Roman’s concrete: volcanic ash. Usually,  three parts volcanic ash were mixed to one part lime, according to Vitruvius, first-century B.C. architect and engineer. Modern research shows that the very secret of durability of the buildings of the Roman Empire was due to the chemical composition of concretes made with Pozzolan, i.e. the ash’s unique mix of minerals appears to have helped concrete to withstand chemical decay and damage. For information (http://www.smithsonianmag.com/history/the-secrets-of-ancient-romes-buildings-234992/).

  

MENA – Tectonic Shifts Towards Green Building and Constructions

Building and constructions are undergoing tectonic shifts in MENA region especially in the GCC countries. To accelerate cutting down energy consumption and waste production from building and construction, the MENA region puts strict rules for supporting green technologies. Building and construction technology in the MENA region are one of the major sectors with trillion US-dollar revenues. Such shifts will require major investments for replacing the current production of unfriendly OPC-cement with more green cement. Also, building technologies that require huge consumption of energy for operation and service need to be up-dated. Technologies for huge and enormous energy and waste saving are already available but additional and dedicated work what regards adaptation and implementation would be needed.

http://www.albawaba.com/print/business/pr/dewa-and-emirates-green-building-council-discuss-promoting-green-economy-695944

https://www.thebig5hub.com/sustainability/2015/april/green-building-projects-driving-gcc-stone-market-to-54-billion/#

 

GCC Heading Towards SuperGreen In Building and Constructions

GCC countries (Gulf Cooperation Council) are moving faster to SuperGreen solutions in building and construction projects.

Dubai Electricity and Water Authority (DEWA) and the Emirates Green Building Council are strengthening cooperation for supporting a green economy in Dubai and the sustainable development of the Emirate. All future trends support the Green Economy for Sustainable Development initiative, launched by HH Sheikh Mohammed bin Rashid Al Maktoum, Vice President and Prime Minister of the UAE and Ruler of Dubai.

Follow the news:

http://www.albawaba.com/print/business/pr/dewa-and-emirates-green-building-council-discuss-promoting-green-economy-695944

Future Cities – Building Towards the Sky.

With increasing worldwide population and predictions that 75% of the world population will be living in cities by the year 2050, building towards the sky can be unavoidable necessity. That would require more durable constructions and materials with appropriate building and architecture solutions. Future  Cities would require management policies with balanced policies consumption/waste versus protection/conservation of nature in accepted social context. Http://sustain-earth.com

Lessons to be learned – Technology and Livelihood Improvement in the Rural Areas of Asia.

Among the consequences of economy driven policies in ASEAN countries is the increasing economic gaps between countries in the region. For sustainable large-scale and long-term socio-economic developments it is vital to promote less developed countries as well. Shift from commercially driven agriculture to new technologies where the regional natural resources are not only used sufficiently but, also, sustainably managed in a manner that respect traditional systems of the rural areas. 

Commercialization always has some draw-backs as well, e.g. depletion soil fertility, and excessive use of chemical fertilizer, herbicides and pesticides with long-term impacts and threats on ecosystems in different ways. Strategies need to be implemented to create sustainable and profitable farming systems that realize the existence of vital rural societies in tact with the natural functioning and metabolism of natural eco-systems and in harmony with existing biodiversity.
https://www.jircas.affrc.go.jp/english/program/proC_1.html

Sustainability Research Is An Active Choice For Survival and Wellbeing

Sustainability has been part of the human awareness since the birth of the ancient man on planet Earth. The instinct for survival and wellbeing has never been crystallized in well-structured components for building up webs of instrumental coordinated solutions until the 1980s with the introduction of the most widely quoted and used definition of sustainability. An imperative and collective need put forward by the Brundtland Commission of the United Nations in 1987: “sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs.” 

The Earth is a unique planet in our universe with complex functioning structure of systems that support the evolution of complex webs of metabolic processes for sustaining all living forms on Earth.


 The man has always struggled for his survival on earth and in particular to get access to and to secure affordable food resources not only for himself but for the new comers as well.

After and during the industrial revolutions, the focus of humans was directed mostly on technical issues to free mankind from manual work, to find resources and technology for  basic necessities through mechanical and machinery work. The Man realized the role of science and technology for his wellbeing and since the nineteen and twenty centuries the advances in science and technology emerged more and more to be the only inevitable route for improving the living conditions. This didn’t come for free and price and costs for humans started to be huge with clear finger-print on the accelerating divergence of the three basic drivering wheels of sustainability: economy, environment and social drivers. 

 

Economic interests resulted in increasing consumption of natural resources with severe impacts on degradation of the environment because of increasing waste and pollution, and piling up of social defects in particular the remarkable failure in erasing global poverty. These along with enormous indicators of the declining natural resources as being defined by the so-called resource “peaks”.
 

The divergence and fragmentation of these drivers and spheres brought considerable, and yet, accelerating threat for the survival of humans.  The net result of what humans achieved in science, technology, policies and politics were in direct conflict with not only the search for wellbeing but also the very basic needs for survival.

The major spheres of the functioning and metabolism of all life forms on earth were  brought out of their natural equilibrium, e.g. the atmosphere with an increasing temperature because of global warming.

Global warming and accelerating production of waste and pollution have caused enormous damage on the hydrophere with irreversible effects on the ecological resources where humans are dependent on, e.g. fish.

The growing human population still induces additional challenges for achieving the goals for global sustainability developments.


The era of sustainable developments has already started but it is still in its infancy and the needs of the necessary knowledge are enormous in particular what regards building the underlying science and technology as well as the associated management policies in all sectors and on all levels.


For more information on sustainability visit: http://en.m.wikipedia.org/wiki/Sustainability

Http://sustain-earth.com” is an integrated coherent platform for Applied sustainability. Interests and efforts put by its coordinator and manager of started already through a simple experiment at the age of fourteen. As a young student, at Abo-Tyg/Assiut secondary school, starting to learn chemistry I bought a small amount of hydrochloric acid from my pocket money. I added the acid to a soil sample from the garden, it was a violent reaction in the test tube with evolution of gases. An exciting experiment where drew my attention with the conclusion that there must be geochemical reactions taking place in the environment. This in addition to continuous observations from summer holidays that I spent at the village of my grandfather, Cairo’s Waraa. Some local industries, farmers and poor people of the village, as is the case for many other villages on the Nile, used or you may say “abused” the water of the Nile to do their household needs, e.g. cleaning, washing animal and the removal of waste in general. These events and my experience of the continuous lack of water in the very arid environments prevailing in southern parts of Egypt as it rains one per decade etched an enormous early interest that caused gearing my early geology, chemistry and physics university education towards research on environmental waste, pollution and their impacts on global aquatic systems.

This resulted in an academic career in Environmental Physics a discipline that I created myself with further created further work in Applied Sustainability.

 


Is Using Ordinary Portland Cement  in Building Industries Sustainable?

Ordinary Portland cement “OPC” is the most common type of cement in general use around the world by being a basic ingredient in building industry, e.g. concrere, mortar, stucco and most non-speciality grout. It is a fine powder, typically produced by heating materials, e.g. alumino-silicate clay-materials and limestone, at very high temperatures in a kiln, along with small amounts of other materials. It is essential in many construction around the world as concrete is one of the most versatile materials in this context.

The low cost OPC, and widespread availability of other naturally occurring materials used in Portland cement, make it one of lowest-cost materials widely used throughout the world.

Portland cement is caustic, can cause chemical burns, irritation or with severe exposure lung cancer. It, also, contains some toxic ingredients such as silica and chromium. Environmental concerns are very high energy consumption arising from mining,  manufacturing and transportation of the cement and the related air pollution including the release of enormous amounts of green-house in particular carbon dioxide. Other amouts of environmental hazard involve dioxin, nitrogen and sulphur oxides as well as fine particulate dust. 

“Sustain-earth.com” will expand on detailing the environmental and climatic threats of OPC and the emerging sustainable techniques and friendly materials with more environmentally, economically and socially beneficial values.

http://www.tececo.com/files/newsletters/Newsletter37.htm

Do Human Innovations Support The Essentials of Life on Earth?

Water and nutrients are essentials for the evolution and sustainability of life on earth. The magic, secrets and drivers of life on earth are not human inventions. Human innovation is merely restricted to accelerating the natural metabolic processes on earth, e.g. production of food in agriculture, animal husbandry and fisheries, beyond natural rates and limits. The growing global population and the underlying industrial and economic systems continue to fuel the so-called human innovation towards a never ending spiral for more and more unsustainable consumption of the natural resources.

Humans can not servive on earth without clean water, healthy environment and sustainable food production. However, these requirements can only be fulfilled through sustained production and consumption of energy and natural resources for supporting the basic needs for humans, e.g. housing, education, health, transport and communication. What originally started for the benefits of human developments turned out to major threats for human survival because of increasing waste and pollution from use and abuse of the natural resources.
Humans have interfered in the natural functioning and metabolism of all life forms on earth with negative impacts on essential and global biogeochemical cycles. Examples are: global warming as resulted from malfunctioning of the global carbon-cycle. Degradation in O-cycle (oxygen cycle) is also remarkable because of unfit and polluted air in urbanized living areas, in particular cities as result of expansion of traffic and transport systems and random industrial activities; poor access to oxygen in aquatic systems because of eutrophication in aquatic systems and excessive use of fertilizers on land; enhanced photo-reactions in the atmosphere with the associated negative impacts of tropospheric production of ozone.

Declining reserves of natural phosphorous, are among emerging threats, because of increasing production and use of this limited natural resource with irreversible impacts on P-cycle. Agricultural and industrial nitrogen inputs to the environment currently exceed inputs from natural N fixation. The impacts of anthropogenic N-inputs have significantly altered the global N-cycle over the past century. Global atmospheric N2O have increased from pre-industrial levels where most of which are due to the agricultural sector.

Human activities have major effects on the global S-cycle. The burning of coal, natural gas and other fossil fuels has greatly increased the amounts of sulphur in the atmosphere,?ocean and depleted the sedimentary rock sink, i.e. instead of being burned at steadily rates. Over most polluted areas there has been a 30-fold increase in sulfate deposition. The enhanced sulphur and nitrogen oxides in the atmosphere is causing negative impacts through acidification of aquatic systems with global negative feedback effects on aquatic life and vegetation.

All in all quality of global land-water resources are under accelerating threats from pollution  and waste.



http://www.flatheadwatershed.org/natural_history/natcycles.shtml 

 

 

Poverty and The Backside of the Fast Developing Economies

The emerging economies are like express trains, if you don’t catch one of these trains you will left behind with an old ticket worth nothing.

All of the so-called emerging economies suffer from increasing poverty. The fast developing economies in these countries and regions do not leave enough time for coordinating all the necessary instruments and tools to provide sustainable social-economic infra-structures.

http://www.poverties.org/urban-poverty-in-india.html#gallery[pageGallery]/2/

Education And Global Security – Who Would Pay The Cost of Both

One out of every three children never sets foot in a classroom. Two major questions need to answered in this context:

(1) what shall we do with one third of the world population lacking education;

(2) can we naive enough that we will have global SECURITY under such conditions.

With what is happening around the world we can not run away from answering these two strategic questions. As a result of these two questions many other questions are currently facing us with merely no sustainable answers. “Sustain-earth.com” will continue to address the emerging global threats facing the future of our planet.

Preparing Yourself For Higher Studies and Other Career-Development-Plans.

Preparing yourself for higher studies and for embarking on new “Career-Development-Plans, e.g. at universities, requires careful planning and robust management plans to meet occasional, and probably frequent  constrains of, tight “time and economy” budgets. In advance preparations of housing, local transportation, how to solve unexpected socially, economically and knowledge related obstacles are essential. To have quick strategies and solutions, of how, who and when, are essential for continuity in your studies and “Career-Development-Plans.

One of the major challenges in our lives is always the same for all of us and converges to making proper decisions in critical transitional periods. Some examples are changing schools in connection with ending one stage of education and embarking on a new and different one; changing destination to study in  a new country with a different culture and language; or even moving into a new city and leaving behind your social network of friends and relatives. Major parts of your security and safety will be freely given up in exchange of new challenges and opportunities. This will mean new risks and threats but unlimited opportunities for major breakthroughs as well. In a society we are always surrounded with devils and engels, so the social game dictates to sort out which is which to survive the critical periods and to create new security and safety shelters.

Student finance” is a major issue that you need to be prepared for and here are some facts about it (https://lnkd.in/bewFByd). It is also good to get a great deal of real advices from experienced international students, e.g. as the case described here at the University of Michigan. In this case, support and guidance from the International Center, and the Rackham Graduate School, were  provided to ease the cultural transition that generally confornt all international students. Specially what regards adjusting to a new culture, expanding the network of friends and connecting with the international community in large (http://youtu.be/bmTawu5anH8).

The so-called “Cultural Shock” is being described by the Oxford Dictionary by a classic 5-stage model. It is explained by disorientation experienced when one is suddenly subjected to an unfamiliar culture or way of life. “Culture Shocks” mean, also, going through periods of frustration, adjustment, and even depression.
(http://www.deborahswallow.com/2010/05/15/the-classic-5-stage-culture-shock-model/).

An additional special case is being a Ph.D. student with a family and children, how does it work in this case. Here is an example: 
(https://www.insidehighered.com/blogs/gradhacker/wearing-two-hats-tales-beleaguered-grad-student-dad). In many careers, as well, having a family may require periods of new and additional challenges involving

“Sustain-earth.com” will continue to expand on different interesting components of the educational issues.

  

The diverse Values of Light 

Apart from the importance of light for visualization and making objectives and images of things to be seen. Light itself is involved in the very production of living organisms, plants and animals, through what is known as “photosynthesis” where water, carbon dioxide and nutrients are fundamental raw materials. This is in addition of being essential for the production of electricity by modern solar panels through what is known as the “photo-electric effect” originally explaied by Einstein.

  

http://en.m.wikipedia.org/wiki/Illustration

The Role of ICT in the Transfer of Knowledge 

The Internet and WWW provide enormous inspiration by being inevitable sources and indispensable visual-aided instruments for the transfer of knowledge. Modern ICT has unlimited and far unpredictable benefits not only what regards on-line education but also for more dynamic and effective application of science and technology. H2H “human-to-human” and M2M “machine-to-machine” communication are emerging more and more on their own and in combinations with an ever increasing flora of automation in industry, trade and household applications.

http://www.dailymail.co.uk/news/article-2072572/A-little-drop-magic-One-woman-turns-drops-water-mushrooms-aliens–Spider-Man.html

EveryDay Life and Modern Perception of Energy 

Human perception of energy keeps changing with time and from place to place. Generally speaking in modern life our understanding of energy is very much emanating from real everyday life needs. Accelerating pressures and competition on the declining natural resources dictates new realities hardly existed in the twenty-century where progress in science and technology was enormous but far from being SUSTAINABLE.

In Einstien’s era energy, however, was merely focused on microscopic and laboratory scale, e.g. its physical meaning in particular the concept of “conservation of energy”. Little attention was given to the diverse realities and needs in everyday life. Even in education and research, what concerns the quality of energy and the consequences associated with its production and use. This unfortunately has caused severe and serious negative impacts  in the society, e.g. industry and technology application. These negative impacts piled up and are now seen on the large-scale and everywhere with remarkable damage on the quality of all life forms. To divert the situation and to achieve sustainable socio-economic developments is not a simple matter and can not be done overnight. Science, politicians, professionals and policy-makers have a new mission to secure future generations and make the earth a safe and secure home for its inhabitants.