Category: Energy Resources

The use of conventional energy sources, typically fossil-fuel hydrocarbons, primarily coal, oil and natural gas, have caused gradual degradation in environment and climate because of the emission of pollutants, including toxic compounds, greenhouse and acidic gases. Unilateral use of natural minerals and fossil fuel as energy sources, and the increasing competition on such limited resources have introduced large uncertainties and constrains in the energy sector, especially with the existing reality of “oil-peak”. In some part of the world, vegetation and woods from forests are also used for household needs, e.g. heating and cooking, which have caused gradual expansion of deserts and Sahara with associated negative impacts on groundwater and surface-water hydrology. Nuclear power remains to be important as it produces about 15% of world’s electricity. However, the access of such high-tech in developing countries is very limited compared to developed countries, e.g. EU, South Korea, Japan, US, Russia and Canada. Also, the fear from nuclear accidents and disasters, e.g. Fukushima in Japan and Chernobyl in Ukraine, and non-peaceful use of nuclear power poses further limitations on the expansion of nuclear power technology. Natural uranium, used in nuclear power plants, is also a limited resource. Hazard from nuclear accidents, disasters and uranium mining as well as nuclear waste remains to be of major environmental threats.

Hydropower, which is among renewable energy sources, is projected to grow considerably in China, Asia and Africa. Because of the coupling between water and energy resources “water-energy nexus” and there mutual impacts on the national and regional socio-economic developments and associated trans-boundary conflicts many issues have to be carefully assessed and resolved on continuous bases. Other sources of renewable energy, e.g. wind, solar and bio-energy, are becoming more and more popular and attractive on the global scale because of their environment-friendly nature and the flexibility they offer to individual users and small-scale stakeholder applications.

Iran – The Untold and Complex Story of Iran’s Nuclear Ambitions

The story of Iran’s nuclear ambitions to have nuclear power started already in the 1970’s upon recommendation from Ford’s administration of the US. The US, France, Germany and the UK though that Iran can be a good client for the nuclear technology and the UK started collaborating with the Shah’s of Iran on his development of nuclear power. However, the situation changed after the revolution in Iran with withdrawal of the west from further collaboration with Iran what concerns the development of nuclear power.

Under pressure from finite fossil fuel reserves and scrutiny from the West, Iran’s nuclear program has had a difficult road. Here is the story of Iranian nuclear energy told from the other side.

“Iran has tried its best to have a pragmatic approach, not an ambitious approach”, claims the country’s ambassador to the IAEA, Ali Asghar Soltanieh. A climate of suspicion and hostility has historically smothered any meaningful discussion of Iran’s right to nuclear technologies. The West accuses Iran of creating a ‘confidence deficit’ by pursuing a clandestine programme of enrichment; Iran sense hypocrisy, and claim to be singled out.  Ultimately, all parties acknowledge that a system that enshrines the right of the powerful to bend the rules is unsustainable. “The whole of the non-proliferation regime has elements of double-standards built into it”, concedes David Hannay, a member of the House of Lords. But will this consensus signal a move beyond the rhetoric to purposeful negotiation? “Iran has an opportunity to become the good boy of the world.”

One central issue what concerns the globalization of high-tech industries, and other emerging sustainable technologies, is how would we achieve sustainable socio-economic development around the world that involve secure and safe use of clean energy and water resources. However, there are many important political challenges what regards raising public awareness, promotion of supporting education and research programs that can solve society and populations needs. In this context, stronger engagement of all sectors and stakeholders are required for the conservation and protection our natural resources.

Berlin/IPCC – Greenhouse Gas Emissions Are Still Accelerating

Berlin, 13 April – A new report by the Intergovernmental Panel for Climate Change “IPCC” indicates that global emissions of greenhouse gases have accelerated despite reduction efforts. The report, also, shows that many pathways to substantial emission reductions are available. As, many other atmospheric pollutants and toxic compounds are expected, also, to be associated with the emissions of greenhouse gases, then enhanced degradation in world aquatic and ecosystems will be taking place in parallel. In addition, the sites where these emissions are taking place there would be additional local and regional problems as well to the workers, in particular “high occupational levels of pollution” and the public health of individuals “air quality” in general.

http://www.scoop.co.nz/stories/WO1404/S00127/many-pathways-to-substantial-emissions-reductions-available.htm

South Africa’s Sustainability Challenge: Food; Energy and Water

By 2030 South Africa will have 60 million people, i.e. more than double of today’s population, to feed. Today’s water and energy resources are already used up for living and providing food. The only solution is SUSTAINABLE planning and recognizing the way these three resources, i.e. food, energy and water, are INTER-CONNECTED.  We need sustainability as much as sustainability needs us.

http://m.youtube.com/watch?v=MGNxRZD4Uxs

Middle East – Railways for 250 Billion US Dollars

Follow the mega constructions in the Middle East region for the transformation to more a sustainable future where railways provide the most environment friendly and sustainable large-scale and long-term transportation system. Mr. Loay Ghazaleh, Advisor at the Undersecretary Offices, The Ministry of Works, Bahrain, describes in a comprehensive, pedagogic and innovative slideshow the ME “Middle East” Railway Development and PPP “Public Private Partnership” Financing Framework over the next ten years. A major shift in the transport sector of the Middle East with enormous investments that can bring about huge feedback advantages regarding mobility of goods and citizens.  

ABSTRACT. The Middle East has allocated nearly $250bn to various railway projects over the next 10 years with ambitious plan to build around 67,000km of railway tracks throughout the region. The region has the opportunity to build the world’s most advanced passenger and freight transport systems. The presentation touches on all aspects of railway development and strategies in the region including different Public private Partnership (PPP) models and financing / funding advice to better develop rail projects as a sustainable means of transport.

http://www.slideshare.net/mobile/loayghz/me-railway-development-ppp-financing-framework

Canada Oil Sands – How Sustainable is Sustainable?

 

Increasing energy demands and pressures on Conventional Light Oil “CLO” of the Eastern Hemisphere (85% of the global inventory) have shifted the focus to Unconventional Heavy Oil “UHO” and Conventional Tar Sands “CTS” deposits around the world. The major part of “UHO” is in the Western Hemisphere (69% of the inventory), mainly the USA, while the majot part of “CTS” is being found in Canada. We have to keep in mind that the world inventories of UHO” and “CTS” may, indeed, exceed the global inventories of “CLO”.

Unconventional oil sources and oil sands are created in the same way as conventional oil—that is, through the combination of organic material, heat, and pressure. The main difference between the two is their ability to move underground. Conventional oil migrates upward due to its buoyancy. This oil moves through pathways in the underground rock in its fluid state and becomes trapped between impermeable layers of rock. Unconventional oil and oil (tar) sands, meanwhile, is formed in sealed spaces of rock, or being mixed with sand, and is not able to move up; it therefore remains in the source rock/sand, trapped in pores or unconnected pores. Unconventional oil and oil or tar sands are therefore produced and extracted using techniques other than conventional method used in Conventional Oil industries. Governments across the globe are investing in unconventional oil sources due to the increasing scarcity of conventional oil resources. 

Due to the different nature of accumulation and existence in underground formations and difficulties associated with production/extraction of unconventional oil and oil sands there are multiple of additional environmental threats and climatic impacts. Production and extraction of unconventional oil and oil sands consume much more water, have enhanced negative impacts on the environment in terms of produced waste, contamination and pollution especially what regards degradation of aquatic life, eco-systems and bio-diversity. Moreover, carbon dioxide emissions from the production and extraction of unconventional oil and oil sands are relatively higher, up to 20%. Indeed, the climatic and environmental (http://blogs.worldwatch.org/revolt/unconventional-oil-implications-for-the-environment-and-greenhouse-gas-emissions-2/) impacts of unconventional oil and oil sands are not fully understood and consequence assessment analyses are fragmentary, incomplete and far from being representative especially what regards the large-scale and long-term impacts and threats.

http://www.greenparty.ca/sites/greenparty.ca/files/attachments/a_comprehensive_guide_to_the_alberta_oil_sands_-_may_2011_-_last_revised_march_2012.pdf

Ethiopia – Innovation in Coupling Education to Society and Population Needs

Poverty is a social longstanding problem and throughout the human history there have been enormous efforts for raising the public awareness about the huge threats and negative impacts of poverty on the socio-economic developments. There are well-documents correlations between poverty and high crime rates, corruption, illiteracy, sanitation, diseases, many other social fragmentation, cultural and degradation problems. Poverty is the biggest single obstacle not only for achieving sustainable socio-economic development but also for bringing about political stability, safety and security in any society. It is a “socio-economic debt” and without appropriate instruments to cure such “socio-economic debt” a pileup of negative impacts and threats will be the ultimate fate of any society with a final result of total socio-economic collapse. The pathway to  poverty is much simpler than erasing it and once deep rooted it isn’t simple to revert the situation. Religions have recognized poverty as a huge social defect. However, with the increasing importance of politics, cultural diversity, social welfare systems, individualism and competitions in a labor free and globalized market new instruments are needed, if not imperative, to erase or at least to reduce poverty.

If we don’t fight poverty will be forced to fight poor people, which is already happening. It is an enormous task for the developing countries, especially in Africa, Latin America and Asia, to build up modern societies with acceptable, affordable and accessible water, energy and food resources in the shadow of an increasingly global complexity in trade and economy. Engagement of all stakeholder and population through NGOs is of increasing importance as political and governmental systems alone are proved to be insufficient especially for effective and rapid transformation to more welfare based societies. One of such NGOs “Stand for Vulnerable Organization ( SVO)” was established in Ethiopia already in 2005 by Misganaw Eticha, currently a Guest Blogger at “sustain-earth”.

For more information about Stand for Vulnerable Organization (SVO), please visit: http://www.sva.org.et/about-us/historical-background/

Transformation to Clean Energy – The Canadian Challenges

The world is currently facing growing pressures for transformation to clean energy in order to mitigate the environmental and climatic impacts of traditional energy sources. For Canada transformation to clean energy is still a big challenge, however it represents a unique opportunity for traditional energy producers and clean energy producers to team-up. These players have to come-up with a coherent task with the government to assure further development of traditional sources of energy in environmentally responsible manner while at the same time start grow more quickly to clean electricity sector. Resolving these issues will make it possible to meet the challenges for the transition to clean energy.

Similar challenges for countries with high carbon dioxide emission per capita, also, exist around the world but not all the countries have the same possibilities and resources for full and quick transformation to clean energy because of necessary huge capital investments, access to the required high-tech infra-structure/expertise and above all the political will. However, countries with low carbon dioxide emissions per capita, e.g. in Africa and South America, have to implement policies and encourage promotion of clean energy production while building up their technology, industry and production sectors.

http://www.pembina.org/pub/2406

Lessons to be learned – The Sustainability Program of North Ireland

While there are no “standard maps” for achieving successful sustainable socio-economic developments everywhere in the world, yet we can learn from exiting strategies and solutions. Naturally, nations around the world have own conditions, structures, needs and may exist in different stages of development with complex internal and external political, economical and trade relations. Assessing the existing models and strategies helps formulating short and long-term roadmaps that are appropriate and suitable to the socio-economic needs and conditions. Successful socio-economic developments can’t be based on random actions and have to follow robust strategies emanating from effective, collective and coherent interactions between all sectors and on all levels. In this context, cloudy and conflicting interesting “within and between” nations can be major obstacles for achieving sustainable socio-economic developments.

An example on how to build national roadmaps for bring about successful socio-economic developments even under economic constrains is given here.

http://www.sustainableni.org/index.php

Mechanized Agriculture in Sudan – Collapse of Sustainable Land-Water Management.

UNEP along FAO, ICRAF and a number of Sudanese NGOs and institutes describe how and why the agricultural sectors in Sudan were gradually degraded and moved rapidly towards more or less total collapse because of environment over-taxation. Since the introduction of mechanization of rain-fed agriculture by the British in 1944 several negative impacts, due to lack of control and planning, were piled up during the last half of the 20th century. This has caused large-scale destruction of environment and triggered severe negative impacts in other sectors as well. The traditional and mechanized agriculture account for 55 and 45 percent respectively of the rain-fed cultivated area. The importance of the irrigated sub-sector is reflected in the fact that while it makes up only 7 percent of the cultivated area, it accounts for more than half of the crop yields. However, irrigated land has own problems. Rapid, uncontrolled privatization, random investment and failure to couple education and research to market and society needs are major causes.

Management of land-water resources in Africa is IMPERATIVE. However, past experiences show not only major failure but the great threats of the blind and random implementation of imported technologies, e.g. Sudan where its cultivable land is about 42 percent with frequent claims that it is the potential ‘breadbasket’ of Africa and Middle East. Agriculture, the largest economic sector in Sudan, became the heart of some of the country’s most serious environmental problems: wide-range of land degradation, riverbank erosion, invasive species, pesticide mismanagement, water pollution and canal sedimentation. Also rangeland’s vulnerability to overgrazing is high and its overlap with cultivation is a major source of potential conflict. The significance of these threats cannot be underestimated: not only are 15 percent of the population partly or wholly dependent on imported food aid, but the population is growing, per hectare crop yields are declining and the enhanced competition over scarce agricultural resources.

The agricultural sector in Sudan is the main source of sustained growth and backbone of Sudan’s economy. Unfortunately, the sector’s economic stake is declining more and more with the emergence of the oil industry. Sudan continues to depend heavily on agriculture, whose share fluctuates around 40 percent of the GDP. The crop and livestock sub-sectors together contribute 80 to 90 percent of non-oil export earnings. With these trends the country will face more unemployment and famine as fifty-eight percent of the active workforce is employed in agriculture and 83 percent of the population depends on farming for its livelihood.

Global warming adds new threats as the agricultural sector in Sudan is highly vulnerable to shortages in rainfall and there has been substantial decline in precipitation and climate change models predict that this trend will continue. Without major action to stop the wave of de-gradation and restore land productivity, the natural resource base will continue to shrink, even as demand grows. Resolving this issue is thus central to achieving lasting peace and food security.

Click to access 08_agriculture.pdf

Amazing High Tech Farm – A Complete Meal Using A Mobile!

Eric Maundu, owner and founder of “Kijani Grows” (“Kijani” is Swahili for green), isn’t a farmer, he’s an engineer with a computer science degree from USA. Maundu himself ran from agriculture in his native Kenya- where he saw it as a struggle for land, water and resources. In the USA he felt the negative impacts of urbanization, industrial waste and traffic pollution on contamination of soils and degradation in land-water resources. In industrial/urban areas and cities, freeways, roads, light rail and parking lots so there’s not much arable land and the soil is contaminated. With these threats in mind he realized he could farm without soil, with little water via aquaponics and with possibilities to use “self-cleaning” and recycling as well as that he could apply his robotics background to farming. An amazing combination of: physics; chemistry; biology; ecology; and computer science in one system.

No soil, instead Maundu is growing plants using fish and circulating water. It’s called aquaponics- a gardening system that combines hydroponics (water-based planting) and aquaculture (fish farming). It’s been hailed as the future of farming: it uses less water (up to 90% less than traditional gardening), doesn’t attract soil-based bugs and produces two types of produce (both plants and fish)., i.e. a full meal!

Maundu- by being trained in industrial robotics- has taken the agricultural craft one step further and made his “aquaponics” smart. Using sensors (to detect water level, pH and temperature), microprocessors, relay cards, clouds and social media networks. Maundu has programmed his gardens to tweet when there’s a problem, e.g. not enough water or when there’s news, e.g. an over-abundance of food to share. With these smart solutions the same information can be shared with farmers in Iceland and China.” Maundu believes that by putting gardens online, especially in places where solar-powered gardens are totally off the grid), is the only way to make sure that farming remains viable to the next generation of urban youth.

Do-It-Yourself: How Does Methane Biodigester Work?

There are many technical approaches and levels of complexity for turning leftover food and manure till biogas. Understanding the underlying science and concepts in a simple way can help to gradually construct and develop own solutions to achieve affordable, efficient and friendly fuctional facilities.

You have input material, i.e. initial reactants that are processed under reduced “anaerobic” conditions, i.e. air free from oxygen through using sealed containers, at a suitable temperature, and more or less neutral conditions. The temperature range can vary around 40 degrees celsius, and to be controlled using heat from the sun along with suitable insolation if necessary, i.e. depending on region and season. The initial reactants have to be crushed to facilitate the bacterial reaction where we have two types of bacteria, e.g. those creating acidity and those producing methane. There are high-energy organic matter, i.e. those with high sugar and high carbohydrate content, and low-energy organic matter such as grass and manure (more or less consumed organic matter). High-energy food promote production of acidity, i.e. “acid” type of bacteria while the other methane-producing bacteria are much more accessible in animal manure. The liquid leftover “effluent” from the whole process may be used fertilizer, however it can be beneficial to do some analysis to see the quality in relation to the composition of the reactants. In this context, adjustment of the control parameters, i.e. temperature, duration and acidity as well as the composition of reactants can be part of development and optimization of the production facilities.

Would Algae solve our Food, health and Energy Needs?

Our understanding of algae, their unique and rich diversity, is shifting more and more towards finding industrial applications for production of useful products, in particular, food (human food, fish food and animal food), energy and farmaceutical products. There are known methods and tools to extract oil and other valuable products from algae, also to change the genetic content and chemical composition of many algae.

Many and many organizations give lots of money for research for commercialization of algae. Research takes is typical path fuelled by society needs, human hopes for prosperity and fears from environmental threats. In this amazing journey of what we are right now and where we are heading to, there are several important facts to be known, e.g. benefits and threats. There are, also, key interests in understanding the potential of artificial photosynthesis as a new path, not yet fully understood, for production of energy.

Algae are “biochemical reactors” that can recycle carbon to produce organic compounds in different forms, which indeed is the origin of all the gas and oil reservoirs around the world. Multi-hundred-million dollar industries have invested in many products, e.g. sushi wrap, oils, dental impression, ice cream thickener, cosmetics, medical products, plastics… etc. They still invest more and more money for production of energy-rich food, biofuel from algae and use of wastewater to grow algae as well as for the extraction of other useful products like coloring agents and anti-oxidant, agro-culture business for production of food in the fish and shellfish industries.

Basic research is needed, and even imperative, to solve central bottleneck in algae processing technology ranging from cultivation, harvesting, extraction of desired products, processing and refining. Micro-algae are known to grow very fast and there is commercial potential in industrial microbiology where molecular biology in combination with aquaculture and marine farming can yield hybrid and novel technologies. Unlike industrial small-scale microbial technologies, e.g. cheese, beer, alcohol that are based on “closed systems” trying to cultivate algae on large-scale, i.e. in open systems, is a great challenge. Algae are now looked upon as the most sustainable known potential source of biofuel. The challenges are transferring the many different types of small-scale bioreactors to open systems for growing algae at large scale. Up-scaling of algae-based technology leads to emergent issues that are not fully controlled, e.g. competitor algae, predators and diseases (bacteria and viruses). Up-scaling to large-scale open systems, therefore, requires solving a wide-range of difficulties and threats including those arising from varying weather conditions, e.g temperature, and much work is still needed.

Oldest Single CELL “3.5 Billion Years” – Most Important With Much Secrets and Hopes

Earth – the blue planet: lots of water-lots of algae-lots of oxygen. The most important and oldest single cell plants on earth “The Algae” and the very reason of our existence. These single cells carry lots of secrets and many of them are still unknown to us though they played important roles in the evolution and development of life on earth. They have micro- and nano- devices with complex molecular structures and diversity of biochemical metabolic reactions, e.g. photosynthesis and nitrogen fixation, production of amino acids and lipids. Algae with thousands and thousands of species can be very small or very large in size with different colors and can be useful or harmful. Algae remains, diatoms, can be preserved in sediments for millions of years. The most important is that algae are the origin of gas and oil and recently that  algae can be used for production and a source of biofuel!

DIY – Biogas from leftover food and animal manure.

Waste from animals and household can have negative and harmful impacts on the environment, i.e. land-water resources, as well as on health because of degradation of sanitation and living conditions. However, when sorted and treated can be useful sources conservation of natural resources, for improves economy, for producing energy, (biogas or electricity, and fertilizers e.g. different forms of organic fertilizers). It is simply because leftover food and animal manure are organic matter rich in carbon which is a basic element for production of biogas. Breakdown of organic matter in the absence of oxygen, i.e. anaerobic digestion with anaerobic bacteria, can produce biogas. Biogas can, also, be produced by fermentation of biodegradable materials such as manure, sewage, municipal and green waste, plants and crops.

Note: In order to get the best possible out-put from DIY “DO-It-Yourself” you are strongly encouraged to address questions, give comments and contribute in discussions. This will in addition to bringing more clarity, will also contribute in making modifications and further adjustment or even developments for better adaptation to local conditions, e.g. climate, mixture of waste, availability of construction material, running conditions and maintenance aspects.

WHO – Air Pollution Is World Biggest Health Risk – Air Quality Guidelines

Air pollution has become the world’s single biggest environmental health risk. According to WHO it is linked to around 7 million death or nearly one in eight death in 2012. The new figures are more double previous estimates and suggest that outdoor pollution from traffic fumes and coal-burning, and indoor pollution from wood and coal stoves, kill more people than smoking, road death and diabetes combines.

The document is WHO’s Air Quality Guidelines Global Update 2005. These Guidelines offer guidance to policy-makers on reducing the effects on health of air pollution for the four most common air pollutants – particulate matter, ozone, nitrogen dioxide and sulfur dioxide.  Also, issues affecting the use of the guidelines in risk assessment and policy development.

This document contains Part (1) Application of air quality guidelines for policy development and risk reduction; Part (2) Risk assessment of selected pollutants (Particulate matter, Ozone, Nitrogen dioxide, Sulfur dioxide).

Click to access E90038.pdf

Air Pollution Is An Increasing Global Threat to Public Health and The Environment

Air pollution is a worldwide problem especially in many big cities and industrial areas around the world. Emission of fine particulate matter (e.g. aerodynamic diameter ≤ 2.5 µm; PM2.5) , chemicals (e.g. biogenic VOC) and pollutants (e.g. heavy metals), and associated photo-chemical reactions (e.g. production of tropospheric ozone) in the atmosphere as well as in-cloud interactions (e.g. acid rain) experienced dramatic changes since the industrial revolutions. Concentrations of hazardous pollutants in global atmospheric air masses, dry and wet precipitates have been subject to gradual increasing reaching harmful levels for air-quality what regards human health (e.g. lung cancer, mortality) and the environment (e.g. negative impacts for forests and vegetation and quality of life in aquatic eco-systems) in many places around the world.

Climate change influences air quality through several mechanisms, including changes in photochemical reaction rates, biogenic emissions, deposition/re-suspension, and atmospheric circulation. Several techniques/approaches were used in such studies including atmospheric chemistry, climate model inter-comparison, high-resolution satellite observations together with a global atmospheric models and extensive compilation of surface measurements to better represent global air pollution exposure.

http://www.salon.com/2013/09/23/infographic_shows_air_pollution_deaths_around_the_world_newscred/

ICELAND – PIONEER IN SUSTAINABLE USE OF RENEWABLE ENERGY

Necessity is the mother of invention. Where energy lacks there is much concern about finding it and using it with the most sustainable manner possible. This is why Iceland is among very few countries in the world where Renewable Energy Resources are managed with the best possible sustainable solutions. It is, also, possible that the availability and affordability of renewable energy in Iceland attracted Scandinavians to settle in Iceland sometime around the second half of the 9th century as in ancient cultures people sought living there were good possibilities to secure “WE-resources”. i.e. water and energy resources. The necessity and needs for survival are essential drivers for inventions and advances in science and technology. It is interesting to mention that 100% of the electricity production in Iceland is produced from renewable energy resources, i.e. hydropower and geothermal heat. Furthermore, 85% of total primary energy supply in Iceland is derived from domestically produced renewable energy sources.

So, we have something to learn from this country that in addition of being in the icy part of the world has a very long dark winter season. However, Iceland is not as cold as Minnesota (USA), for example, and not as dark as Tromso (Norway). That doesn’t mean that Island is some tropical paradise though.

To learn more about geothermal energy, please, visit:                                                                   (1) http://cognitiveanomalies.com/what-is-geothermal-energy-what-are-geothermal-energy-advantages-and-disadvantages/                                                                                                     (2) http://www.renewableenergyworld.com/rea/news/article/2011/09/working-on-this-one-developers-warm-to-small-scale-geothermal

Must Be Watched! Fukushima – Turning Nightmare and Disasters To Safety and Security

The dream of any nation is to provide its population with safety and security especially in most critical situations with severe disasters, tragedies and collective nightmare arising from fear, insecurity and uncertain future. The nuclear disaster and the national tragedy from Fukushima nuclear accident in Japan demonstrated how collective efforts, the neat national planning along with continuous and intensive hard-work brought about safety and security for almost all the population in Japan.

An amazing awareness and responsibility on all levels for the DE-COMTAMINATION of every single inch or centimeter of land, houses, school, hospitals, roads, trees and practically all environmental compartments. A national DE-COMTAMINATION strategy if followed by other nations much of pollutions and waste problems can be solved. Successful sustainable management is about providing future generations with secure and safe living conditions, it is a collective discipline, awareness and responsibility from all for all and by all including preparing and fostering future generation for how to handle national disasters and severe tragedies.

Cleaning up Fukushima