Category: Energy Resources

The use of conventional energy sources, typically fossil-fuel hydrocarbons, primarily coal, oil and natural gas, have caused gradual degradation in environment and climate because of the emission of pollutants, including toxic compounds, greenhouse and acidic gases. Unilateral use of natural minerals and fossil fuel as energy sources, and the increasing competition on such limited resources have introduced large uncertainties and constrains in the energy sector, especially with the existing reality of “oil-peak”. In some part of the world, vegetation and woods from forests are also used for household needs, e.g. heating and cooking, which have caused gradual expansion of deserts and Sahara with associated negative impacts on groundwater and surface-water hydrology. Nuclear power remains to be important as it produces about 15% of world’s electricity. However, the access of such high-tech in developing countries is very limited compared to developed countries, e.g. EU, South Korea, Japan, US, Russia and Canada. Also, the fear from nuclear accidents and disasters, e.g. Fukushima in Japan and Chernobyl in Ukraine, and non-peaceful use of nuclear power poses further limitations on the expansion of nuclear power technology. Natural uranium, used in nuclear power plants, is also a limited resource. Hazard from nuclear accidents, disasters and uranium mining as well as nuclear waste remains to be of major environmental threats.

Hydropower, which is among renewable energy sources, is projected to grow considerably in China, Asia and Africa. Because of the coupling between water and energy resources “water-energy nexus” and there mutual impacts on the national and regional socio-economic developments and associated trans-boundary conflicts many issues have to be carefully assessed and resolved on continuous bases. Other sources of renewable energy, e.g. wind, solar and bio-energy, are becoming more and more popular and attractive on the global scale because of their environment-friendly nature and the flexibility they offer to individual users and small-scale stakeholder applications.

A New Era of Global Water Disasters and Water Refugees

Waters around the world are facing a new era of threats with accelerating disasters, pressures and constrains due to global warming, waste and pollution. Water scarcity and degradation in water and ecological qualities are creating crises for wild habitats and human civilizations. Many seas, rivers, lakes, and underground water reserves around the world are either lost or losing their aquatic resources with serious impacts on the livelihoods of hundreds of millions people, animals, farming, lives, electricity, and threatening further environment and climate changes.

Chinas Salween River, Europe’s Danube, South America’s la Plata, North American Rio Grande, India’s Ganges, Pakistan’s Indus, Africa’s Nile and Lake Victoria, Australia’s Murray Darling, Southeast Asia’s Mekong-Lancang, China’s Yangtze due to dams, over-extraction, overfishing and climate change. In addition to the threats of global warming and human activities; waste and pollution from industry, agriculture and household further worsen the quality of waters.

Follow the stories of water resources around the globe.

Climate and Environment – Is the Nile Basin Heading to a Total Collapse?

The Nile Basin Countries are facing two major long-term and large-scale threats that can lead to the total collapse of the water resources in the whole Nile system, i.e. from the very sources at its origin “up-stream” to its final fate at the deltas “down-stream”.  These major threats are related to climate change “global warming” and environmental degradation because of waste and pollution (from energy, industry, agriculture and household). To deal with these major threats, i.e. mitigation and solutions, the Nile Basin countries need to develop and implement sustainable management strategies/policies. In this context, achieving sustainable socio-economic developments in the Nile Basin region, which indeed applies also to the other parts of the MENA region, requires coupling public awareness, education, science and technology programs to society, population and markets needs.

Renewables – Wind Turbines are environment and water friendly

The so-called renewable energy sources/resources differ considerably and in many aspects from non-renewable ones. In “susutain-earth.com” we examined one type of electricity generation TPP “Thermal Power Plants” through using fossil-fuel “coal”. The “life-cycle”, in this case the transformation of fossil energy to electricity, was given including the production of waste and pollution as unwanted bi-products with environmentally damaging effects. We demonstrated, also, the so-called WE-nexus, i.e. how the production of (energy) electricity is dependent on water. Here we illustrate the “life-cycle” for production of electricity from wind.

The construction, installation and operation of wind turbines are simple in relations to the more complicated “TPP units”. With appropriate storage solutions, i.e. to compensate for variable power production “weather conditions”, they provide cost-effective and environment friendly solutions, as is the case for solar planels, i.e. with “zero” pollution and no need for water in operation.

Thermal Power Plants – WE-Nexus and Environmental Impacts of Coal Power Plants

Many of us have seen many power stations and industries are built near water bodies, this is because they need the water in their production or need to get rid of their waste, or both. Here we can see how Water and Energy are connected to each other, both with positive or negative impacts. Here is an example of positive and negative impacts given only in a qualitative and descriptive way.

Understanding “Water-Energy Nexus” is a key issue in Applied Sustainability in terms of how transformation of energy, i.e. from fossil form to electricity, not only needs and consumes water but also creates environmental pollution. The emitted atmospheric pollutants and rest products, in this case, e.g. carbon dioxide (100%), sulphur oxide 8%, nitrogen oxide (data on extraction yield is not given), heavy metals such as Pb, Cu, Zn, Cd, ….. (information and data on removal are not given) and water vapor. These pollutants and rest products have negative impacts on the environment in terms of degradation in air, water and ecological qualities, e.g. acid rain that cause acidification of aquatic systems with negative impacts on lakes, rivers and marine coasts.

The life cycle of thermal power plants starts with coal mining, coal transport, coal pulverizing and coal burning (combustion of coal to produce heat and produce water vapor to run the turbines and generate electricity). As mineral coal has different levels of impurities and pollutants, such S, N, heavy metals and probably small amounts of radio-active elements, all these substances will turn to bi-production. The bi-products are not likely to be completely removed and some amounts will be released to the environment as is evident in many areas in China by the naked eye. The negative impacts of such pollution on air and water quality are very well documents in literature, however some countries have improved their production technologies and have strict protection rules what regards air, water and ecological qualities. Nevertheless, emissions of “green house” gases, causing “global warming”, is still a major global problem. The scape of water vapor from fossil-fuel based-power and industrial plants around the world introduces disturbances in natural water cycles and adds new uncertainties in modeling the water cycles. Water vapor is also a “green house”. At the same time, the emerging negative threats from “WE-nexus” on achieving socio-economic developments need further improvements and actions what regards WE-management policies.

MENA and Nile Basin – WE-Saving Strategies Are Needed To Meet Future Challenges

The accelerating consumption of WE-resources “Water and Energy Resources” in the MENA region has huge negative long-term and large-scale impacts on achieving sustainable socio-economic developments in the whole region. The same threats are emerging in the Nile Basin region. Effective large-scale and long-term solutions are urgently required for developing and implementing WE-saving technologies in all society sectors and on all levels.

http://www.saudigazette.com.sa/index.cfm?method=home.regcon&contentid=20130418161903

Water Management – Is China Heading To Socio-Economic Collapse?

An important question for achieving sustainable socio-economic developments in any nation is: what is the limiting factor, is it water or energy? Currently, lack of access to clean water and sanitation kills children at a rate equivalent to jumbo jet crashing every four hours, this is equivalent to 3.4 million people die each year from water, sanitation and hygiene-related problems. Almost 1 billion people lack access to safe drinking water, mainly in the developing countries; the problem will still worsen as 70 percent of industrial waste is dumped untreated into waterways. The so-called emerging economies are, also, facing an accelerating threat from mismanagement of water resources that on the long run will be the most limiting factor for achieving sustainable socio-economic development.

China isn’t an exception, with its 22% of the world’s population, an access to only 5 percent of global water resources and an estimated 300 million people that lack access to safe drinking water. According to the Ministry of Water Resources in China, if China continues to consume and pollute at today’s rate, water demand will exceed supply in less than two decades. The past decades of rapid development, massive construction of infrastructure and huge industrial developments resulted in huge pollutant’s spill untreated into waterways. An estimated 50% of groundwater in cities, 77% of 26 key monitored lakes and reservoirs and 43% of 7 major river basins are considered unfit for human contact. Meanwhile, 19% of monitored rivers and basins, 35% of lakes are reservoirs are considered unfit even for agricultural or industrial use. These effects are related to China’s huge needs for energy and the associated “energy-water” nexus, e.g. 96% of China’s electric power requires water to generate, and 47% of electricity is consumed by water scarce provinces. Agriculture is by far the largest consumer of water at 62%, and the largest polluter, with pesticides and fertilizers responsible for about half the contamination of waterways. Soils are, also, facing great degradation, the average level of organic matter in soil is now 1-5% for northeastern China’s arable land, compared with 8-10% in the 1950s. A report published in 2007 by the World Bank and the Chinese government estimated the combined health and non-health cost of outdoor air and water pollution at approximately $100 billion a year, or about 5.8% of China’s GDP. Water pollution, meanwhile, worsens China’s severe water scarcity problems, with the overall cost of water shortages estimated at 1% of GDP.

Climate change has, also, negative effects in form of growing desertification and prolonged droughts in agricultural regions nationwide with impacts on drinking water and livestock as well as water levels in some of the countries major hydropower producing regions.

http://chinawaterrisk.org/resources/analysis-reviews/china-water-portrait-past-future/

Japan’s Energy Choice – Security Rather Than Needs

Global warming whether is a natural climate change process or artificial man-made climate impacts have enormous impacts on our choices to select secure and safe solutions of human energy needs. Also, pollution and waste products from energy production and use, including accidents and disasters, makes it difficult to keep land in tact for agricultural and for suitable household uses. Modern threats from climate, waste and pollution dedicate new realities for humans in terms of limiting the diversity for appropriate, safe and secure life on earth. The   road for achieving sustainable socio-economic developments becomes more difficult once we overload it with more “time-bombs”.

http://www.renewableenergyworld.com/rea/news/article/2014/05/fukushima-japan-rebuilding-communities-with-solar-commits-to-a-100-percent-renewable-energy-by-2040?cmpid=SolarNL-Tuesday-May20-2014

India – Hopes For Solar To Light Up Live For 400 Millions.

A major challenge for policy makers in less favored countries is to provide millions of people with minimum amount of energy to solve their basic and essential daily needs.

In India, for example there are about 400 million people that lack access to electricity, i.e. more than the combined population of the U.S. and Canada. The situation in many other parts of the world may look the same, in particular Africa. The problem is that elections in many countries are conducted on un-realistic promises without workable solutions that ends up with little, no solutions or even more negative impacts. Solutions that are not implemented in time would certainly make the situation worse. The outgoing government led by Prime Minister Manmohan Singh missed a 2012 target to provide electricity to all households. Now , India’s new government led by Narendra Modi plans to harness solar power to enable every home to run at least one light bulb by 2019. So, assuming that the outgoing government had some six years to solve India’s energy delimma, the situation now is such that solutions will further be delayed by another seven years. In total 13 years to deliver solutions if we assume that the current government will be successful. People have to wait for at least one decade not for getting solutions but to hope for change.

http://www.renewableenergyworld.com/rea/news/article/2014/05/indian-government-to-use-solar-to-bring-power-to-every-home-by-2019?cmpid=SolarNL-Tuesday-May20-2014

Is It Air or SMOG We Breath? Cities That Can Run Out of Air.

Toxic compounds, hazardous chemicals and aggressive gases are not only produced in laboratories with restrict protection laws and well planned ventilation systems. They are, unfortunately, allowed to be produced and emitted as well as to keep circulating in our living environments and in the atmosphere around us. Though most of our concern is focused on “green-house” gases and the “green-house” effect, air pollution and air quality are among important environmental issues because of their severe impacts on health.

Many capital cities around the world suffer from “smog”. “Smog” has different origin and composition. Heavy industries using oil, metals and natural gas in their production can be potential sources for smog formation. Domestic fireplaces with coal and wood can contribute to major parts of the smog formation in some cities; this can be also the case with high volume of road traffic, rubbish incineration and dust from the surrounding deserts. In some mega cities the number of cars has increased to tens of millions in the last 30 years. However, fossil fuels, in particular coal, powered plants can still be major sources causing the biggest problem. Apart from man-made pollution, natural processes, e.g. sandstorms in hot arid and semi-arid regions/deserts can contribute to smog forming. In combination with intense ultra-violet rays industrial and automobile emissions can be transformed into, as transported as, ozone.

But, according to the most recent figures from the World Health Organization (WHO), the megacity doesn’t even rank among the top 10 cities for smog. Most of the worst afflicted are smaller cities across the developing world.

Poor air quality causes a number of illnesses for city residents, like chronic respiratory problems and lung cancer. According to a study by the Max-Planck Institute in Mainz, some 15,000 people die every year in Dhaka due to air pollution. Researchers found the world’s highest concentration of sulfur dioxide there. Smog can contain high levels of toxic chemicals, e.g. hydrocarbons, heavy metals, fine particulates, S-/N-/C- compounds, ozone, …. and other hazardous compounds.

The Chinese capital, Beijing, isn’t the only big city suffering from smog. From Asia to the Middle East to the Americas, here’s a look at the 10 worst cities for bad air. Beijing, China; Ahwaz, Iran; Ulan Bator, Mongolia, Lahore, Pakistan, New Delhi, India; Riyadh, Saudi Arabia; Cairo, Egypt; Dhaka, Bangladesh; Moscow, Russia; Mexico City, Mexico

http://www.dw.de/top-10-worst-cities-for-smog/g-17469135

Top Challenges of 21st Century – Sustainable Use and Management of Water

Worldwide water governance has been challenged on several levels from local up to international though the existing forces are beyond human control, e.g. growing human population, increasing diversity in economic activities, enhanced competition on water resources, threats of climate disruption on water balance and availability. Sustainable management of natural resources is facing challenges in particular policy-making, the  implementation of laws, interpretation of international treaties and conventions. Examples are the trans-boundary water issues and disputes between upstream-downstream countries due to divergence in utilization of water resources for power generation, industry, agriculture and household uses. Water scarcity and security are typical issues in the MENA region and have caused disputes in the Nile Basin and Israel-Palestine area. This is, also, the case in other parts of the world, e.g. between India and Pakistan.

Other challenges are: affordable access to safe drinking water as a human right, e.g. sanitation and health issues in Sub-Saharan Africa; the needs for ways to measure access to improved water and unimproved water; the push to privatize water resources to drive efficiency and water trade; drought management and impacts of climate change. In global perspective water as a human right is not totally agreed upon, e.g. by the US and others international donors and what concerns affordability there are still more efforts to be done.

A panel discussion on contemporary challenges is given here on the sustainable use of the world’s freshwater resources, and the effectiveness of international law, e.g. international human right law, international environmental law and others, to meet existing challenges.

Lessons to be Learned – Most Polluted Air and Water on Earth

Among the most important indicators for life on earth are air and water qualities with poor qualities of air and water it becomes difficult, even impossible, to sustain life in any form. In some places in the world abuse of the natural resources, e.g. blind exploitation, production and use, have caused serious degradation and enormous damage, of natural environments. Exploitation, production and consumption are associated with environmental, ecological and human costs in form of “environmental, ecological and health degradation” and if such costs are not accounted for we will have negative sustainability balance. With gradual pile-up of such environmental, ecological and health debt, as is the case in the given examples, there would be no places on earth for suitable and sustainable life.          

http://www.mnn.com/earth-matters/wilderness-resources/photos/the-15-most-toxic-places-to-live/earths-orbit

Is Your City Sustainable? Top Five Most Sustainable Cities in the World.

The following are currently considered to be the top five most sustainable cities in the world:  VANCOUVER, CANADA; SAN FRANCISCO, U.S.; OSLO, NORWAY; CURITIBA, BRAZIL; and COPENHAGEN, DENMARK.

When it comes to implementing sustainable initiatives these cities are leading the globe in how that achieved and/or can achieve sustainable cities through using renewable energy and by cutting back on emissions. Among common sustainability characteristics of these cities (http://archive.rec.org/REC/Programs/SustainableCities/Characteristics.html) are:

leadership in using and developing renewables; green transport and traffic with low emissions; strict and green buildings with improved energy efficiency and ongoing LEED-certified green building projects); high marks for air quality and clean environment; waste management with efficient and high recycling rates; reserve high percent of land to green spaces, ongoing projects for efficient electric car traffic (Vancouver and San Francisco); protected forest, parks waterways, and agriculture land (e.g. Oslo, Curitiba); intelligent lighting adjusting intensity depending on traffic conditions and weather (Oslo); bio-methane from waste to power mass transit and heating; projects for cutting carbon emissions by 50 percent in coming decades with goals to be the world’s first carbon neutral capital by 2025 (Copenhagen); heating system powered by high percent renewable energy, mainly from biomass from residual waste with plans to reach 100 percent renewable sources for heating in most the cold regions in the world (Oslo); innovative program that allows people to exchange trash for transit tokens or fresh produce (Curitiba); projects to get 50 percent of the population on two wheels by 2015 by closing down some major roads to cars and developing an additional 43 miles of bike lanes and requiring all new developments to incorporate some level of vegetation into building designs (Copenhagen).

http://www.ecomagination.com/top-five-most-sustainable-cities-in-the-world

Global Warming Is Still Questioned Though Suggested 118 years Ago

Svante Arrhenius was the first to claim global warming to be due to “green house” gas emissions in 1896. A Swedish scientist who suggested the effects of fossil fuel on enhanced global warming. This finding was a by-product of research on the possible impacts of carbon dioxide on the great Ice Ages by Arrhenius and Chamberlin. The topic was forgotten for a very long time and it was thought than human influences were insignificant compared to the natural warming of the earth’s atmosphere by solar activity and ocean circulation. The oceans were thought to cancel out the atmospheric pollution by being carbon sinks and that water vapor was seen as a much more influential greenhouse gas.

Since 1940’s research on carbon dioxide started to expand with developments in infrared spectroscopy and impacts of atmospheric carbon dioxide and water vapor on the absorption of heat. In the 1950’s and 1960’s it became clear that the ocean could never be a complete sink of carbon dioxide and the atmospheric lifetime of carbon dioxide was estimated to be about 10 years. Quantitative data that the oceans absorb nearly a third of man-made carbon dioxide was made possible by carbon-14. This radio-isotope can trace the time-space dynamics of atmospheric carbon dioxide, i.e. both natural and artificial.

In 1950’s and early 1960’s Charles Keeling used the most modern technologies to produce concentration curves for atmospheric carbon dioxide in Antarctica and Mauna Loa. The curves showed a downward trend of global annual temperature from the 1940’s to the 1970’s and it was first feared that a new ice age might be near. In the 1980’s, the global annual mean temperature curve started to rise and began to increase so steeply in late 1980’s, an upcoming new ice age was strongly questioned and the global warming theory began to win terrain fast. In 1988 it was finally acknowledged that climate was warmer than any period since 1880 and Intergovernmental Panel on Climate Change (IPCC) was founded. In 1990’s scientists started to question the greenhouse effect theory, because of major uncertainties in the data sets and model outcomes. So far not many measures have been taken to remove all the uncertainties in climate change. It is a global problem that is hard to be solved by single countries. While accepting the existing uncertainties for the time being we can’t prevent major climate and weather disasters to take place. How shall we mitigate the increasing frequency and magnitude of climate and weather disasters whether they are natural or artificial? Though the situation can be similar to earth quakes, where we know they do take place but we do not know with certainty when, where and what to do to safe/protect our lives. Climate and weather disasters have much more devastating and irreversible impacts and threats on all life forms on the earth and can take place on much more larger scales.

http://www.lenntech.com/greenhouse-effect/global-warming-history.htm

China-European Innovative Cooperation For Cleaner Cities

Chinese and European experts are cooperating, through meetings, conferences, roundtables and workshops, to gain valuable insights into clean energy. Government and business stakeholders highlighted their willingness to strengthen EU-China cooperation on energy security. Sustainability concepts to do more with less harm are developed in Europe for successful applications of the “reduce, reuse, recycle” hierarchy in industry. Based on this, it is possible to re-design products that, after their useful life, they can be much environment-friendly than what is possible today.

The China-Europe cooperation involves a “Demo Zone Initiative” that supports the city of Urumqi in technological innovation, low-carbon urban planning and circular economy by introducing successful EU experiences and technologies. Urumqi is one of the most pol- luted cities in China and the world because of heavy air pollution from industrial sulfur dioxide emissions. The dominant industries are petrochemical, metallurgical and textiles. The goal of the “Demo Zone Initiative” is to establish a win-win method to be replicated in other Chinese cities using a toolkit for urban action and district energy planning with local project financing and public-private partnerships (PPP).

The Chinese-European cooperation, by being inter-sectorial and inter-disciplinary, has synergistic effects that bring added value to education, public awareness, construction, industry, transport, environment, decision-making, capacity building, education, research and development.

Click to access EC2_CleanEnergyPerspectives_Issue6.pdf

China’s Energy Needs – The Water Resources Set The Roof for Energy Use.

In production strategies, more energy means more work gets done, it can also mean more conservation in energy can generate more work. The difference between these strategies is not only saving energy to get the same amount of work but it is the enormous saving of assocaited waste and pollution which in turn means more quality life, water for healthy food and conservation of environment. This makes the essence of modern sustainability, three-fold saving “energy-water-food” with enormous feedback on health, life quality and biodiversity. In this context, a  strategic question in the use of energy for production and living is: how much is enough in energy use and consumption? Can we humans use and consume as much energy as we wish and what are the limits? Are there any roofs for our energy needs for consumption, in this case what are these roofs, how they can be defined, monitored and implemented?

Indeed, global water scarcity started to be more pronounced is not because water on our planet is becoming less but it is because our energy needs for consumption are becoming not only unrealistically high but they are currently unaffordable and even inaccessible for future generations.

Click to access Water-Energy-Nexus-FinalReport_5.pdf

The Water Crisis in the MENA Region – Making the Most of Scarcity.

Water in the MENA region is integrated into the wider economic policies of the countries of the region and therefore water issues have to be addressed to multi-sectorial audience to bring about a broad reform within the current political and economic climate.  Indeed, MENA is using more water than it receives each year and most of the countries in the MENA region cannot meet current water demands. The situation is likely to be worse and per capita water will fall by half already before 2050, with serious impacts for the region’s already stressed aquifers and natural hydrological systems.

In coming decades, economies and population structures will force enhanced demands for water supply and irrigation, in addition to new needs to address industrial and urban pollution. Future management of water resources will be further complicated as the major part of the region’s water flows across international borders and climate change will introduce complex shifts in rainfall patterns. If the MENA region will not be able to meet these combined challenges the socio-economic consequences could be enormous, e.g. erratic drinking water services, more expensive desalination for cities and there would be needs for emergency supplies during droughts. Unreliable water resources, depletion of aquifers, service outages will cause stress on expensive infrastructure, depress farmers’ incomes, intensify local/regional conflicts with short- and long-term effects on economic growth and poverty, social tensions within and between communities, and increasing pressure on public budgets.

Post 1960s water policies of securing supply and services require switch toward better water management with consideration to entire water cycle and not the separate components, also use of economic instruments for water efficiency and flexibility to manage variations supply and demand. Changes in planning should include integrating water quality and quantity and consider the entire water system, promotion of demand management, tariff reform for water supply, strengthening of government agencies and stronger enforcement of environmental regulations. Also, shift from low-value uses to higher-value needs. Equal involvement of all stakeholders in water management policies including stakeholders outside irrigation, water resource management, and water supply and sanitation, e.g. within agriculture, trade, energy, real estate, land, finance, and social protection.

Reforms for sustainable socio-economic water management should involve: political and technical policies; effective interactions with non-water decision makers; accountability of government agencies and water service to the public as well as transparency for good and bad performance.

Click to access Water_Scarcity_Full.pdf

Renewables Changed Bitter AC-DC Rivals to Successful Marriage

Thomas Edison and his Direct Current “DC” technology lost the historical so-called “War of the Currents” to Alternating Current “AC” in the 1890s that was championed by the Edison rivals Nikola Tesla and George Westinghouse. The argument was AC was far more efficient at transmitting electricity over long distances.

Edison, inventor of light bulb and the world’s first DC power distribution system in 1882 was not totally wrong to insist on the needs for DC distribution grid. The technological advantages of AC over DC at that time dedicated the success and expansion of AC power distribution grids initially developed in 1886 by Westinghouse and Stanley with major inputs from Nikola Tesla. An AC power system allowed voltages to be “stepped up” by a transformer for distribution, thus reducing power losses, and then “stepped down” by a transformer for consumer use. The AC technology became gradually mature for large-scale grid up-scaling. However, the advances of DC power distribution for long-distance power transmission took a revival in 1954 when the Swedish company ASEA, predecessor of ABB, the Swiss maker of power and automation equipment, linked the island of Gotland to mainland Sweden with high-voltage DC lines.

However, by late 19th century science and technology was too blind to recognize the problems associated with the use of fossil fuel, e.g. coal, oil and gas, for production and distribution of electric power. During the 20th century it has been an accelerating pile-up of threats not only from fossil fuel consumption what regards the green-house impacts on climate, but also the associated impacts on water resources from fossil fuel production in form of enormous and irreversible environmental pollution and degradation of ecological and water qualities.  With birth of renewables, e.g. solar, wind, geothermal, hydropower and wave power, and the continuous advances in associated DC and smart technologies the advantages of DC distribution grids became once more apparent. They are economic for high-voltage and high-capacity runs over very long distances, they are better suited to handle the electricity produced by solar and wind farms, which starts out as direct current.

Follow the emerging needs for transformation to renewables and the implementation of more sustainable management policies.

http://www.nytimes.com/2011/11/18/business/energy-environment/direct-current-technology-gets-another-look.html?_r=1&

China’s Renewable Challenges for Efficient and Optimized Grid

China’s need for energy to serve its citizens and industries will accelerate tenfold in the period 2000-2035, i.e. from 1TWh to 9.6 TWh. Until now the share of renewables in China’s energy mix is about 17% while the major part of its energy, about 80%, is provided through fossil coal.

China’s challenges are related to its relatively very young renewable programs, and that the regions of highest energy demands are not matching China’s geographic distribution of its renewable energy production. Another challenge for China is the integration of its regional grids to a more efficient and optimized grid especially with consideration to the additional emerging renewable energies and the associated needs for storage. With these challenges a clear energy saving policy is needed for integrating renewable energy into China’s system. This is not an overnight and easy task especially if sustainable policies have to be taken in consideration for the reduction of greenhouse gas emissions which will remain to be one of the most serious difficulties for China not only from climatic view point but also from environmental and air quality prospective.

http://www.managementism.com/2012/integration-of-renewables-in-china/

Renewables – European Challenges While Moving Towards A Super Grid.

Creation of a single electricity market in Europe has been moving in a positive direction. But, it is still a long way to go, particularly what regards the connection and integration of national electricity markets, the physical interconnections between Member States, and the promotion and facilitation of cross-border market-balancing. The same is true for the coordination of investment in generation, transmission and storage capacity. EU targets in areas such as climate change and energy security are additional challenges for achieving a single European electricity market. Renewable need to contribute to security of supply just as fossil fuel operators need to contribute to climate protection

In a single European energy market, the increasing penetration of renewables must be accommodated in a sustainable matter and this would require special considerations from the Member States. With increasing weight of renewables, the overall stability of the grid will certainly be ruined. The market is facing new challenges with the facilitation of self-consumption and peer-to-peer energy exchanges within distribution networks. Apart from technical and regulatory issues, the answers in every country are likely to differ because of the differences in energy mix and societal models. In this context, true pan-European market solutions can be favored over additional and scattered regulatory measures, as suggested below.

http://www.renewableenergyworld.com/rea/news/article/2014/04/moving-towards-the-european-super-grid?cmpid=WNL-Friday-May2-2014

Modern-Day Silk Road Connecting China to Europe!

The new ‘silk road’, a rail link from China’s factories to heart of Europe

The new “silk road”, a rail link from China’s factories to heart of Europe. It is one of the world’s longest railways – an approximately 11,000-kilometre “modern-day silk road” that traverses Russia and Kazakhstan to link a megacity in the heart of China with a key commercial hub in western Germany.

See more at:

http://www.dailynewsegypt.com/2014/03/30/new-silk-road-rail-link-chinas-factories-heart-europe/