Category: Forestry & Land-use

Though the increasing urbanization in many parts of the world, developments of rural regions in the developing countries and the conservation of forests and wildlife remain to be essential for achieving sustainable socio-economic developments. Mitigation of climate change and promotion of green- and eco-technologies, and agro-industries for food, feed, fibre and fuel production are very much dependent on forestry, agriculture and land-use activities which would require increasing investment and infra-structures especially in rural areas, e.g. in Africa, South America and Asia. However, this doesn’t necessary mean less increase in urbanization but rather increasing integration of rural areas with urbanization, e.g. roads, small industrial and agro-facilities, and community services. Such trends should, also, benefit from the accelerating use of wireless technology ICT, off-grid solar panels and the expansion of small-scale farming, trade and land-use activities. The vast areas of forestry, agriculture and land-use will further require adaptation to new conservation and water management technologies, e.g. surface and groundwater, and rainwater harvesting.

UN – World Water Day

Water is emerging more and more to be a global neccessity not only for the survival of life on planet Earth and improving our life quality on all scales and levels but also for providing young generation with meaningful jobs.

http://www.unwater.org/campaigns/world-water-day/en/
Sustain-earth.com continues to look far and deep in our future on planet Earth.

  

Managing Sustainability – Science, Technology, R&D Versus Politics, Socio-Environment, Economics

Where are we today in the process of promoting sustainability ( https://en.m.wikipedia.org/wiki/Sustainability). To know this we have to examine the existing situation. 

There are needs to know the diverse parameters and factors governing the outcome of our efforts in relations to the goals of the ongoing “sustainability mission” as defined by the UN-SDG (https://en.m.wikipedia.org/wiki/Sustainable_Development_Goals). It is essential to have wide-range of global observations, enough infra-structures of instruments and global alternative of approaches for measuring and assessing our achievement in managing the process and promotion of sustainability (https://en.m.wikipedia.org/wiki/Sustainable_management). We have just to apply the simple role “what we can not measure does not exist” also “what we can not measure we can not control”. 

There are many imperative questions in this context: how can we assess and measure sustainability? Do we have enough world-wide observation systems and tools? Are there enough appropriate instruments and approaches? Who is doing what, how and when? What are the spatio-temporal status of sustainability on regional and global scales? These questions and associated answers are not straightforward and far from being known everywhere, for everyone and whenever necessary for taking actions. So far, science, technology and R&D have not delivered sustainable answers for the addressed questions as if they did so, we did not need to be in the situation we have today and there is no warranty that they will do so in the future if we keep the addressed questions unanswered and keep going “business as usual”. 

What we know today is focused on replacing fossil-fuel with renewables, which is in itself a slow process and far from filling the complete width of managing sustainability. Associated with this is merely a single but imperative parameter (https://en.m.wikipedia.org/wiki/Parameter), i.e. the “changes in global average surface temperature” with complex system of observations upon which various models can predict essential and important data about climate and weather under the prevailing global warming conditions (http://www.globalissues.org/article/233/climate-change-and-global-warming-introduction).
Even if science, technology and R&D did what they are supposed to do to fully support and promote sustainability on the global scale still there are political, socio-environment and economic obligations for appropriate management of sustainability according to the outcome of the Paris Conference in December 2015 (https://en.m.wikipedia.org/wiki/2015_United_Nations_Climate_Change_Conference). It has already taken several decades to convince world politicians and policy-makers to recognise the threats from global warming though it was already known for many decades in science and technology circles. It is this time lag and slow communication between science, technology and R&D on the one hand and politics, socio-environment and economics on the other which causes severe threats for appropriate advances and successful implementation of the UN-SDG.

The outcome of the Paris Summit of 2015 (http://unfccc.int/meetings/paris_nov_2015/meeting/8926.php) is an alarming collective reminder of what we constantly failed to do to meet a growing number of global problems. Beneath global warming there is, indeed, an accelerating pile-up of complexity of old unsolved issues.

  

From Megacities to Megaslums – Slums The Fastest Growing “Lifestyle Communities”

Historically, there have been three major global modifications for human settlement, migration and mobility on earth. These can even be decribed as tectonic transformations of our lifestyle, which have shaped and reshaped human life and affected human streams around the globe: agriculture, urbanization, and industrialization. These three can very well denote stages or phases of socio-economic developments without specific order though agriculture and food production are essential, central and common needs for us and will remain to be so. It is not strange that agriculture and food production were among the first activities for humans on earth, thereafter came industrialization and urbanization. However, science and technology were, and still are, natural prerequisites for any socio-economic development to take place anywhere. Implementation of innovations in science and technology is not straightforward, i.e. in the process of industrialization and urbanization, as it might seem in the first place. I do agree with Albert Einstein who is one of our great thinkers and philosophers of all times “The world we have made as a result of the level of thinking we have done thus far creates problems we cannot solve at the same level of thinking at which we created them.” 

Urbanization is a major effect of the expansion of industrialization, and both urbanization and industrialization are very much dependent on science, technology and education. Urbanization, however, unlike industrialization has different dynamics and evolution, and can be much more dependent on policy-making and management, at least in terms of socio-economic planning. Even though, the simple definition of urbanization, i.e. the process by which towns and cities are formed and become larger as more and more people begin living and working in central areas (http://www.merriam-webster.com/dictionary/urbanization), the full definition does involve the quality or the state or the process of becoming urbanized. Increasing urbanization is hardly a new phenomenon, this has been happening since the time of the first city, somewhere between 6,500 and 8,000 years ago. Urbanization was even associated with many glorious and famous civilization, e.g. in ancient Egypt that brought excellent examples of harmony, social and cultural developmemts. Among important new issues that make us to re-think and re-consider what urbanisation brought with it: are sustainability; the implementation of UN-SDG; the emerging needs for adaptation to the post fossil-fuel era and what urbanization should be in terms of preservation and protection of water, energy and natural resources.

Post-agricultural urbanization caused dramatic increase in population in cities and towns versus rural areas. A process that began during the industrial revolution, when workers moved towards manufacturing hubs in cities to obtain jobs in factories as agricultural jobs became less and less common. Urbanization in China, for example, has brought hundreds of millions of people from rural locations to the bustling coastal metropolises. The effects of urbanization, however, are more tangible and better recognized than those of agricultural land-use; e.g. air pollution and increasing child asthma; forced choice between rural hopelessness and urban despair; does urbanization creates a good living places for all citizens and people, particularly families; increased loads of sewage discharge into the streams. Above all, the severe expansion of slums within and around major/mega cities and towns.

Across the world, slums are home to a billion of people, one in seven of the world’s population. By 2050, according to the United Nations, there could be three billion. The slum is the filthy secret of the modern mega-city, the hidden achievement of 20 years of untrammelled market forces, greed, neglect and graft (http://www.newstatesman.com/global-issues/2011/08/slum-city-manila-gina-estero). Megacities will often turn into Megaslums under the coming and increasing urbanisation, fueled by migration and differential birthrates. We see this occurring first of all in parts of Africa, Asia, and Latin America. As current immigration trends continue, we will see the emergence of true Megaslums in Europe, North America, Oceania, and even in Japan and other presently low-migrant wealthy nations that are losing the demographic race (https://alfinnextlevel.wordpress.com/2015/10/23/urban-world-utopia-or-global-dysgenic-idiocracy/).

For older cities in developed countries – London, Paris or New York – urbanization took place gradually over a century and with tight interactions with industries and engagenment from  research, technology and education. They had time, resources, know-how and knowledge to adjust. In contrast, in developing Asian, intense urbanization is taking place within few short decades in random fashion and completely degenerated from supporting infra-structures and with complete absence of public and basic services, e.g. education, health, transport, water and sanitation. Unlike the Western cities that urbanized earlier, developing Asian cities simply do not have the administrative, management, institutional and financial capacities to manage urbanization and resulting socio-economic upheaval within such short periods. Urbanization is, indeed a complex challenge, with implications that are difficult to forecast especially in the absence of coordinated policies, management and administration (http://thediplomat.com). Most disastrous consequences arise with rapid and random urbanization in the developing countries (http://www.iied.org/study-warns-failure-plan-for-rapid-urbanisation-developing-nations). Governments in Africa and Asia must have strict plans for urbanization or risk harming the future prospects of hundreds of millions of their citizens with knock-on effects worldwide. They should heed lessons from Brazil whose failure in the past to plan for rapid urban growth exacerbated poverty and created new environmental problems and long-term costs that could have been avoided (http://knowledge.zurich.com/risk-interconnectivity/the-risks-of-rapid-urbanization-in-developing-countries/).

By 2050 more than two thirds of the world’s population will live in cities, while the many benefits of organized and efficient cities are well understood, we need to recognize that this rapid, often unplanned urbanization brings risks of profound social instability, risks to critical infrastructure, potential water crises and the potential for devastating spread of disease. These risks can only be further exacerbated as this unprecedented transition from rural to urban areas continues. The increased concentration of people, physical assets, infrastructure and economic activities mean that the risks materializing at the city level will have far greater potential to disrupt society than ever before (http://www.afdb.org/en/blogs/afdb-championing-inclusive-growth-across-africa/post/urbanization-in-africa-10143/). Urbanization in Africa has largely been translated into rising slum establishments, increasing poverty and inequality. However, there are large variations in the patterns of urbanization across African regions. The relatively fewer slums in North African countries is mainly attributed to better urban development strategies, including investment in infrastructure and in upgrading urban settlements. More broadly, 60% of African citizens live in places where water supplies and sanitation are inadequate. As most of the migrants from rural areas are uneducated/unskilled, they end up in informal sector with low income and intermittent, and naturally seek for shelters or become tenants of slum landlords. Many African cities have, therefore, to deal not only with slum proliferation but also with increasing insecurity and crime. Weak institutions have contributed to poor urban enforcement, resulting in dysfunctional land and housing markets, which in turn has caused mushrooming of informal settlements. Furthermore, African governments have neglected the key drivers of productivity which include small and medium-size enterprises, human resource and skills development, and technological innovation. These factors are essential in advancing predominantly informal, survivalist and basic trading activities to higher value-added work (http://www.un.org/apps/news/story.asp?NewsID=35556&Cr=URBAN&Cr1#.VtsxxUV86nM).

Relevant slideshare: https://www.slideshare.net/mobile/PECSweb/urbanization-brief-history-future-outlooks; https://www.slideshare.net/mobile/RajendraPSharma/urbanization-a-theoretical-view-perspectives-growth-cause-and-problems

Here is a short summary on How Slums Are The Fastest Growing “Lifestyle Communities”: http://www.theurbandeveloper.com/fastest-growing-suburbs-slums/

  

Shaping the Future of Human Landspace – Pedagogics & Sustainability Education

Education for Sustainable Development “ESD” or Sustainability Education (https://www.plymouth.ac.uk/your-university/sustainability/sustainability-education/esd) is about enabling every human being to acquire the knowledge, skills, attitudes and values necessary to shape a sustainable future. The Nordic countries have long traditions in meeting the needs for changing climates by being at high-latitudes where water change phase from being solid ice to liquid water. Also, where precipitation can be either snow or rain. The point here is the phase change of the water, as from the management point of view, has much technical requirements though the high abundance of water is a gift of nature to the Nordic countries. Though the temperatures at high-latitudes may have positive impacts on health, they are technically speaking not as friendly to live in as compared to lower latitudes. In terms of the sunshine and its seasonality the Nordic countries are not in same lucky situation as countries around the Mediterranean or even the equator. Another severe limitation for life at high-latitudes is temperature as the functioning and metabolism of life systems in particular for humans have their own conditions. The associated challenges in terms of water and energy, however, turned to be of great advantage for finding answers for confortable living for everyone where the baseline is long-term and large-scale survival. This is exactly the core of sustainability where its there pillars have to be in tact (economic, environment and social). To translate population challenges to individual solutions of complex problems under varying and shifting “economic, environment and social” conditions, instruments and tools for doing so have to be accessible and affordable for everyone but yet in communicative and structured manner. That is being defined in modern times as EDUCATION where its content, i.e. knowledge, is not static but now and then needs to be updated, structured or even improved. This dynamic part of education and knowledge “RESEARCH” is imperative and has to continuous and intensive. The world-wide recognition of sustainability as life-style promotes new global necessities in education and research. In this context, pedagogical issues at all stages and types of education and research have been recognized by being essential. 

The Handbook of Research on Pedagogical Innovations for Sustainable Development is the outcome of a major conference in Finland celebrating ten years of work promoting education, especially teacher education, for sustainable development or sustainability. “Reorientation of teacher education towards sustainability through theory and practice. Proceedings of the 10th international JTEFS/ BBCC conference Sustainable development, University of Eastern Finland Reports and Studies in Education, Humanities, and Theology No 7, University of Eastern Finland Joensuu, 2013. The work in this conference has been done in parallel with the UN Decade of Education for Sustainable Development (UN DESD: 2005– 2014). The Conference followed UNESCO’s rigorous and open definition of Education for Sustainable Development.

The main areas of discussion were: Sustainable early childhood education (ECE) and preschool education; towards systemic and integrative research methodology in ESD studies; pedagogy of sustainable future: museums, forests and culture environments as platforms for 21st century learning; sustainable education issues in science education; sustainable ICT in education; adult education for sustainable development, arts, design and skills; home, health and well-being, tourism research – connections on well-being, education and sustainability; teacher education for inclusion; social pedagogy as a dimen- sion of sustainable life; sustainability in community practices; and Earth Charter: values and multicultural approaches to education for sustainable development.

Uncovering the whys: what motivates teachers and researchers to conduct education and research in particular towards systemic and integrative methodology, application and promotion of Sustainable Developments is of major global interest.

https://www.dropbox.com/s/gpoz7bk60qh66tp/Teacher%20education%20and%20sustainability.pdf?dl=0

  

Global Warming and Rise of Sea Level – Would Your City Still be on Map 2100?

BI-Science YouTube is a Business Intelligent solution provider, for the on-line media industry, of videos about the newest discoveries in space, medicine, and biotech along with science explainers (https://www.youtube.com/channel/UC9uD-W5zQHQuAVT2GdcLCvg). 

This video by BI Science is about one of the many irreversible effects of climate change. Sea levels have been rising at a greater rate year after year, and the Intergovernmental Panel on Climate Change estimates they could rise by another meter or more by the end of this century. In 2013 National Geographic showed also that sea levels would rise by 216 feet if all the land ice on the planet were to melt. This would dramatically reshape the continents and drown many of the world’s major cities.

Sea level rise is caused by two factors related to global warming: the added water from melting land ice and the expansion of sea water as it warms. The increase in sea level is being measured by two methods, i.e. tide-gauges and satelite altimetry (http://www.global-greenhouse-warming.com/measuring-sea-level.html). Many leading science and technology institutes and organisations have reported on the increase of sea level which is estimated to be up to or even more than 3.39 mm/yr depending on the used approached, e.g. https://www.skepticalscience.com/sea-level-rise.htm; https://www.ipcc.ch/publications_and_data/ar4/wg1/en/spmsspm-direct-observations.html; https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch5s5-5-2.html; http://climate.nasa.gov/vital-signs/sea-level/; https://www.ipcc.ch/publications_and_data/ar4/wg1/en/faq-5-1-figure-1.html

Here are some inconvenient facts about the global impacts of the rise in sea level on heavily populated coastal regions (https://m.youtube.com/watch?v=VbiRNT_gWUQ).

Urbanization Trends – Sustainability is Not “One Size Fits All” 

How to make our cities sustainable, indeed there is no “one-size fits all” solution as cities around the world face different challenges when it comes to defining what a sustainable city is. Joinig the ongoing transformation to a more sustainable future is becoming not only a global need but rather a neccessity where the urbanization process is not a random process anymore. Yet, the historical, cultural and traditional evolution will play cental role for adoptation along with many other indicators across socio-cultural, economic, climate, energy and environmental domains. ” Juliet Davis, senior lecturer in architecture at Cardiff University says “there will be no one size fits all”. Lucy Warin, project manager at Future Cities Catapult says “There are of course underlying principles that support good, sustainable urbanism – firstly, good city governance, powerful city leaders who know their region and can respond quickly as issues arise. And secondly, citizen engagement. Smart people make smart cities and any sustainability solution should start and finish with the citizens”.

More on how to make our cities sustainable at:
http://www.theguardian.com/sustainable-business/2015/apr/17/how-to-make-our-cities-more-sustainable-expert-view?CMP=Share_iOSApp_Other

Here are, also, some quirky ideas for making our cities more sustainable:

http://www.theguardian.com/sustainable-business/2015/apr/16/ten-quirky-ideas-for-making-our-cities-more-sustainable

This said, there are other important issues, what regards the global transformation to a more sustainable future, to take in consideration. Though about 70% of the global population is expected to live in cities by 2050, there very little known about how we can achieve sustainable rural-urban integration. This is specially true in developing counting where for example 70% of the African population is living in rural region with agriculture as a main source of income and employment. Rural Africa suffers from extreme levels of poverty in terms of energy, water and sanitation along with general lack of basic public services and infrastructures for education, health, transportation and communication.

Global Warming -Reversable of the Irreversible is Impossible

Energy and mass are conserved in closed systems. Looking at our universe, the solar system, the earth and using the concept of closed systems we find the following. Since the earth can be looked upon as a “closed system” then we can conclude that what we consume in terms of any fossil natural resources, i.e. being mined and used, is irreversible and can not be brought back as they were before. The same can be also said about natural minerals. Furthermore, all irreversable processes (mining and associated production to other forms, e.g. energy and industrial products) generally give rise to irreversible hazardous products in form of waste and pollution that impacts negatively on the functioning of natural systems. These natural systems, e.g. aquatic systems and land-water resources are generally expected to go out of order and to suffer from “malfunctioning”. In this context the earth’s natural resources can be generally classified into four main categories: 

(1) Mined and used irreversibly with major and remarkable large-scale and long-term damaging effects and negative environmental impacts 

(2) Mined and can be used reversibly but with high economic costs and major side-effects and negative environmental impacts

(3) Mined and can be used reversibly with minor economic costs and limited negative environmental impacts

(4) used and reused reversibly with limited environmental impacts

  

2016 – Foresight and Top Priorities for Africa

The sixth annual Foresight Africa captures the top priorities for Africa as by 2016, offering recommendations for African and international stakeholders for creating and supporting a strong, sustainable, and successful Africa. It is hoped that the Foresight Africa 2016 will promote a dialogue on the key issues in uencing economic development in Africa  and ultimately provide sound strategies for sustaining and expanding the economic growth to all people of Africa in the years ahead.

There are major structural failures in Africa that indeed threaten the path to successful sustainable developments in particular the accelerating urbanization which is generating high density of slums in African mega-cities with uncontrolled and major drains from the rural agricultural regions. Also, the random and aggressive  exapansion of the private sector on the shoulders of very week public sectors with poor basic services for the majority of the African populations.

Read the full reports: https://www.dropbox.com/s/50x4nakzc4wus5i/foresightafrica2016_fullreport.pdf?dl=0

  

  

Sustainable Future – ICT & Foreign Expertise Imperative In Education 

The world around us is moving steadily  and rapidly towards different distinations to meet the growing challenges for post oil and fossil-fuel era or even more seriously stated towards what we can call the post natural resources era. One exception is the solar energy which will outdate all other natural resources on earth including water and the life itself. 

This does come with a surprise as all existing knowledge and research predictions indicate that all natural resources on planet earth are, or sooner or later will be, going through peak-consumption followed by gradual decline and even annihilation. In the case of water and life it is about peak-quality and peak-life as we are also facing peak-waste and peak-pollution in this very century. However, it is only our collective human intelligence, integrated worldwide innovation and coherent hardwork combined with systematic planning and above all sustainable policies and management strategies that can save our planet from total collapse and annihilation. 

Successful transformation to sustainable future for planet Earth can not and will not be achieved without effective global dialog, shared knowledge and expertise combined with worldwide solutions and work for implementation of innovative and sustainable policies and management strategies. We can not imagine that this can be achieved by “business as usual” where only a small and localized portion of the world population has access to knowledge and expertise while the large majority of the global population lack the resources and capabilities to contribute constructively in saving planet Earth. 

It is not about finding false and destructive solutions for erasing poverty (only filling the hungry stomachs) since we will be overloading planet Earth with more blind consumption, generating and accumulating enormous waste and pollution everywhere. It is about empowering the majority of the world population with resources and capabilities to actively share the heavy responsibility for preservation and protection of our collective natural resources on earth. This is only possible if we have collective vision and mission for more sustainable future for our planet Earth. 

It is interesting to see how some first-class universities (http://ocw.mit.edu/index.htm) are taking major steps for the globalization of knowledge and increasing the mobility of expertise around the world.

  

Getting Our Planet on the Sustainability Road – The Reversed Engineering 

The post industrial revolution era was  geared to lifestyle based on production and consumption engineering technology. While our global lifestyle is moving on new tracks to revert what went wrong in the post industrial era new concepts are being emerging. Future  technology will involve the expansion of the so-called “Reversed Engineering” where 12 GREEN Engineering Principles would be absolutely imperative for getting our planet on large-scale and long-term sustainability roads. 

Read more about this: http://pubs.acs.org/doi/pdf/10.1021/es032373g

  

Education, R&D and Public Awareness are Imperative for Sustainable Policies 

Understanding existing pressures and constrains for implementation and performance of successful sustainable policies requires tight and continuous involvement of all citizens on large-scale and long-term socio-economic policies. 

Planet Earth is a complex living organism with delicate balance that makes possible the unique functioning and metabolism of all life forms on earth. Water, energy and natural resources are essential and basic components that contribute in the earth’s delicate balance. Modern neccessities and future challenges are becoming more and more clear and require from us and future generations to keep such balance in tact with nature’s own dynamic processes. Our consumption of water, energy and natural resources needs to take in consideration the nature’s own delicate balance. 

Visit, share and contribute in “Sustain-earth.com” to inform and be informed on our growing needs for understanding the basic of APPLIED SUSTAINABILITY. An introduction is given at ABOUT (http://sustain-earth.com/about/).

  

Developing Countries – Sanitation is Still a Global Threat for Water Quality

In science there is far big gaps between theory, reality and technological applications. The same holds as well for existing enormous gaps between what the UN is wishing to implement in terms of the so-called Sustainable Developments Goals “SDG” and the reality we lived in and we still have to live with. The environmental and ecological situation, in particular water quality around the world, as it exists today did not develop over night and will not disappear over-night. Such reality is the core of lost generation in the past and for decades to come in the future (see earlier posts in http://sustain-earth.com). The real challenges for having sustainable management policies around the world need practical solutions with strong underlying educational and public awareness infra-structures. 

There are huge needs in all education and public awareness systems around the world for basic information and practice on hygiene and sanitation issues (http://www.infonet-biovision.org/content/introduction-hygiene-and-sanitation) with systems for strict guidelines for solid implementation in all small communities and villages in rural areas in the developing countries, e.g. Guidelines for Assessing the Risk to Groundwater from On–Site Sanitation “ARGOSS” (http://www.indiawaterportal.org/articles/guidelines-assessing-risk-groundwater-site-sanitation-argoss).

Indeed, achieving sustainable quality in surface water and groundwater systems and thereby improving ecological and human life qualities in many developing countries, in particular Africa, depend on succsseful sanitation policies as sanitation is an accelerating global threat for water quality, hygiene and health as well as life quality in general.

   
 

Citarum River – Waste Management, Public Awareness, Education, Protection and Monitoring Are Key Issues In Water Management 

Water management explained simply means “water care” where water is being cleaned after using it and before injected it again to the environment. Water in nature is meant to be clean and fresh, and that is the way water ends it global natural cycle in the form of rain. 

Successful water management policies are not only essential for life on earth but it is imperative and should be composed of many dynamic key issues involving the effective removal of waste and pollution from joining the water cycle in all its stages. Waste and pollution management, public awareness, education, protection of water bodies and associated monitoring programs are typically carried out through major, strict and comprehensive national strategies, directives and regulations. These have to be in place all the time, anytime and everywhere, it is not a matter of being done now and then as the costs involved in rehabilitation are very huge and time consuming with complicated procedures and actions.

A typical case to illustrate is The Citarum River, indonesia, which is known as the dirtiest river in the world. The Roadmap for the rehabilitation of the river system is an extensive plan with many components and phases that is to be completed by 2023 at a total cost of $3.5 billion. This will be a huge undertaking by people and government of Indonesia for empowering communities to better plan and manage their water resources for a more sustainable future.

https://haltonrecycles.wordpress.com/2012/10/10/the-importance-of-waste-management-and-fresh-water-resources-looking-at-indonesias-citarum-river/
  

The Road to Sustainable Water Management For Pangani River in Tanzania

Can Ecologists and Engineers Work Together to Harness Water For The Future? This is indeed among key questions for  the sustainable managements of water resources in the Pangani River catchment. As in many river catchments in Africa constrains from climate changes and the increasing pressures on water uses call for appropriate water management strategies, policies and regulations. In particular considerations to the dynamic nature of climate change versus water resources availability and affordability for diverse needs and services has to be taken into account.

Information on the hydrology and water resources of the Pangani River, Tanzania, is given at (https://en.m.wikipedia.org/wiki/Pangani_River#/media/File%3APangani_Town.jpg) 
http://www.newsecuritybeat.org/2014/11/ecologists-engineers-work-harness-water-future/?utm_campaign=Feed%3A+TheNewSecurityBeat+%28New+Security+Beat%29&utm_medium=feed&utm_source=feedburner

Agrictulture Management in Small Scale Farming – Catching Up With ICT technology 

Human innovation never halts and it’s not only a matter curiosity but in most cases a matter of survival. Indeed, both curiosity and survival are very much related on long-term perspective. Curiosity can generate solutions for survival and our survival instinct fuels our creativity and curiosity. 

I enjoyed very much being a student and I still love to learn as it is the only tool to refresh and jog myself forward in a turbulent and an ever changing world. For successful navigation in life you need a compass to direct yourself but there are no such ready-make compasses that are tuned for everyone. So, I created one for myself, “a survival compass driven by curiosity”. Survival makes my everyday living while curiosity gives the momentum to cope with changes and unexpected obstacles in everyday living. 

During my studies at school and even in many parts of my university education there were no luxury things like electricity, machines and modern ICT-solutions. Everything were done manually, e.g. to go long distances, solve mathematics using paper-based tables, write personal notes after teachers, and not to mention never ending stories of searching and waiting for literature for days, weeks or even months through local and national libraries and book-stores as well as personal contats. Every technical and scientific transitions in the society were met with great curiosity and my compass has to recalibrated to continue safe and secure navigatation, just because of my very instinct for survival.

In late forties and the fifties came the amazing semi-conductor technology (https://en.m.wikipedia.org/wiki/Semiconductor) and the invention of transistors which gradually changed our life in terms of bringing about intelligent tools, calculators and semi-intelligent machinery, ….. and so on. Advances never stop once humans open small doors that keep creating big inventions and changes. The whole semi-conductor technology moved forwards more and more towards automation and control. The new era of ICT-revolution has started its definite journey that no one expected that it will bring about enomous changes that we are experiencing today in modern houses and in all service-sectors. Here is an example regarding ICT applications for agriculture risk management for micro-scale farming:

http://www.ictinagriculture.org/sourcebook/module-11-ict-applications-agricultural-risk-management

UN has projected that world population could reach 9.6 billion by 2050 and debate has emerged about how best to support farmers between advocates of large-scale agricultural projects and those who prefer more targeted, small-scale efforts. Global food production must double by 2050 to feed the world. Smallholder farmers provide up to 80% of Asia and sub-Saharan Africa’s food, where the vast majority of the world’s poor people live. Long-term food security has to be based on food sovereignty in national, regional and international policies that influence food systems where small-scale farmers are important in this context. In order to thrive, farmers in the developing world need access to seed, fertiliser, microcredit and microinsurance, as well as rights to land and union representation: http://www.theguardian.com/global-development/2015/feb/19/feed-the-world-small-farmers-big-agriculture-mdgs

 

Africa’s Population Have to Wait 25 Years for Electricity 

The energy trends in Africa as compared to other parts of the world show that the majority of the Africa population, 625 millions, have to wait 25 years to get electricity. Half of all electricity in sub-Saharan Africa is generated in South Africa where the generation mix is dominated by coal.

The current energy mix in sub-Saharan Africa is dominated by bioenergy, mainly fuelwood and charcoal accounting for 60%. with renewables are expanding rapidly, but only from a small base. Energy demand in this part of the world is still accounting for 4% of global demand though having 13% of global population.

This means that the UN SDG “Sustainable Development Goals” are not likely to very much delayed in Africa at least until 2040 and assuming that there are major efforts for timely implementation of whatever is needed.

http://fuelfix.com/blog/2014/11/12/energy-trends-in-africa/

  

ICT-Generation Is Already Ruling And Forming A New Global Future. How Would It Look?

WWW is without hesitation a historical invention that changed and still changing the fate of all humans anywhere, at anytime and in every nanosecond on planet Earth. Information Communication Technology “ICT” is moving faster and faster to involve more and more active coupling of humans and machines.

With the birth of World Wide Web “WWW” in May 1993 new generations from 1990 and beyond are now shaping out planet and our lives. The Internet seems like it has always been around and with us …. isn’t it? In this short two decades, or so, is has affected us and changed our lives far more than anything else in the whole intergrated human history with no similar parallels. The question is what this ICT-revolution will take us to and what would the world be like in say 2020 and beyond (https://ispanico82.wordpress.com/2013/05/22/happy-birthdat-www/)

The fast global progress in ICT within the vast landscape of WWW has benefited enormously from all previous stages of developments. Future possibilities are very huge with increasing degree of digital and wireless communication, combined sences, embodied interactions and with computer technology that took us from central computer and many users in early 1940s to smart cities in 2020. We are heading more and more towards smarter solutions, e.g. smart homes, smart factories, smart space, smart classrooms, smart shops, and much much more. ICT for the rich, the poor, the young, the old, and furthermore between communications between humans over the whole globe, humans and machines, and machines and machines: http://www.ourcommonfuture.de/fileadmin/user_upload/dateien/Reden/wahlster_opening.pdf

IMG_1581-0

Threats of Urbanization In Africa – Living In Mobile-Phone Culture Without A Toilet

Policy-makers in Europe and the U.S. have addressed major concerns about the failure of integration of immigrants brought into their labor-markets after the rapid industrial and technology transfer post WWII, e.g. for more information visit the following websites (http://ec.europa.eu/dgs/home-affairs/e-library/documents/policies/legal-migration/general/docs/final_report_on_using_eu_indicators_of_immigrant_integration_june_2013_en.pdf) and (http://m.immigrationpolicy.org/?url=http%3A%2F%2Fwww.immigrationpolicy.org%2Fissues%2Fcitizenship&utm_referrer=https%3A%2F%2Fwww.google.se%2F#2887).

With these experiences in mind and the fact that Europe and the U.S. passed through a wide-scale of urbanization and modernization especially after WWII, we can already expect similar negative consequences and impacts in the developing countries because of the ongoing fast urbanization, in particular Africa. With the exception that the negative consequences and impacts in Europe and the U.S. were/are relatively very much smaller than the observed trends and the expected future changes in the developing countries. Currently, there is already gradual and intensive internal migration due to the enormous urbanization process that is taking place in many developing countries around the world. This process is certainly resulting from the severe failure of integration of rural and urban regions and the core reason for the expansion of poor communities around major/mega cities. This indeed, has two major future impacts: (1) gradual degradation of the basic public and private infra-structures of newly urbanized regions; and (2) shortage of the relatively experienced local and native labor in rural regions on many levels in general and collapse of the agriculture, in particular, with associated negative impacts on food and agro-industries.

This is a very ignored issue in Africa though many severe impacts are already observed in big and mega cities in Africa, e.g. Cairo, Lagos, Nairobi, Bamako……

clothes

 

 

IMMIgration Or INTEgration That Is The Question – Living in A Car Culture Without A License

IMMIgration is an integral part of human experience and always existed throughout human history. In a dynamic world of continuous changes and unlimited needs for successful globalization IMMIgration would always exist. However, the motivations, dynamics and mechanisms are never the same. In this context, there are many critical questions that need to be answered not only at individual levels but also on the larger socio-economic landscape.

Shortly after WW-II immigration was very popular, and people and countries around the world benefited from the unlimited needs and diverse market possibilities that existed at that time. However, the current global situation what regards IMMIgration and INTEgtation is very much different than what it used to be after WW-II. Why the INTEgration of IMMIgarnts did not take a sustainable path, as it was wished, is among most important global political and socio-economic issues (http://ec.europa.eu/dgs/home-affairs/e-library/documents/policies/legal-migration/general/docs/final_report_on_using_eu_indicators_of_immigrant_integration_june_2013_en.pdf).

Full integration of immigrants in the U.S. is still an issue and most immigrants want to be Americans and fully participate in social and civic life. We can expect naturalization and integration programs to be an important part of comprehensive immigration reform. Immigrant integration has benefits for everyone because it enables immigrants to realize their full potential, contribute more in economy and develop deeper community ties. While the United States encourages legal permanent residents to become citizens, there is no national strategy for facilitating integration with sufficient infrastructures to smooth transition from immigrant to citizen. Failure to address this problem in the context of comprehensive immigration reform could lead to endless delays for the millions who currently seek services from USCIS and the millions more who will become part of the applicant pool following legalization.

Another important issue is the internal migration in many countries due the enormous urbanization process that is currently taking place around the world. This process is certainly resulting from the severe failure of integration of rural and urban regions and the core reason for the expansion of poor communities around major/mega cities. This indeed, has two major impacts: (1) gradual degradation of the basic public and private infra-structures of urbanized regions; and (2) shortage of labor in rural regions on many levels in general and collapse of the agriculture, in particular, with associated negative impacts on food and agro-industries.

http://m.immigrationpolicy.org/?url=http%3A%2F%2Fwww.immigrationpolicy.org%2Fissues%2Fcitizenship&utm_referrer=https%3A%2F%2Fwww.google.se%2F#2887

IMG_1110.JPG

Africa and Mediterranean Are World Next Growth Fronteirs

Although the enormous challenges facing Africa it is in rapid transition and represents a real opportunity for patient and responsible investors. From an empty continent that faced numerous conflicts, sanitary crises and strong poverty, Africa is moving towards an accelerated growth that will create a middle class of more than 250 million people. Africa represents vast opportunities for private investors but also important challenges in terms of political and social stability and respect of the environment. Even though risks in operating on the continent remain high, returns may be even higher. Africa is expected to follow in the footsteps of Asia, which two decades ago was facing the same challenges but managed to grow and develop thanks to the newly found macroeconomic stability, dynamic demography and diverse growth drivers present on the continent.
Indeed more and more countries in Africa show greater political stability, policy continuity and improved governance that are prerequisites for attracting the long-term investments to generate sustainable economic development. These investments will move from the historical commodities and natural resources sectors to the sectors that will benefit from the booming emerging middle class market and reinforce the internal growth of the continent.
The strength of these macroeconomic and demographic changes in Africa will definitely make the continent a region of sustainable high growth over the next decades and the world’s next growth frontiers (more information on this subject (http://www.amethisfinance.com/wp-content/uploads/2012/04/Africa-the-worlds-next-growth-frontier.pdf).
Here are 9 mega-trends that are likely to be shaping instruments for the future of Africa (https://agenda.weforum.org/2015/05/9-mega-trends-shaping-the-future-of-africa/).