Category: Energy Resources

The use of conventional energy sources, typically fossil-fuel hydrocarbons, primarily coal, oil and natural gas, have caused gradual degradation in environment and climate because of the emission of pollutants, including toxic compounds, greenhouse and acidic gases. Unilateral use of natural minerals and fossil fuel as energy sources, and the increasing competition on such limited resources have introduced large uncertainties and constrains in the energy sector, especially with the existing reality of “oil-peak”. In some part of the world, vegetation and woods from forests are also used for household needs, e.g. heating and cooking, which have caused gradual expansion of deserts and Sahara with associated negative impacts on groundwater and surface-water hydrology. Nuclear power remains to be important as it produces about 15% of world’s electricity. However, the access of such high-tech in developing countries is very limited compared to developed countries, e.g. EU, South Korea, Japan, US, Russia and Canada. Also, the fear from nuclear accidents and disasters, e.g. Fukushima in Japan and Chernobyl in Ukraine, and non-peaceful use of nuclear power poses further limitations on the expansion of nuclear power technology. Natural uranium, used in nuclear power plants, is also a limited resource. Hazard from nuclear accidents, disasters and uranium mining as well as nuclear waste remains to be of major environmental threats.

Hydropower, which is among renewable energy sources, is projected to grow considerably in China, Asia and Africa. Because of the coupling between water and energy resources “water-energy nexus” and there mutual impacts on the national and regional socio-economic developments and associated trans-boundary conflicts many issues have to be carefully assessed and resolved on continuous bases. Other sources of renewable energy, e.g. wind, solar and bio-energy, are becoming more and more popular and attractive on the global scale because of their environment-friendly nature and the flexibility they offer to individual users and small-scale stakeholder applications.

Sustainability is Imperative for New Technologies – Old Car Batteries into Solar Cells

Sustainability issues are imperative for the survival and any technology. Lead, as other toxic compounds, has negative environmental and ecological impacts both what concerns air and water quality.

Researchers from USA and U.K. came up with new research where they claim could be a win-win solution for new long-lasting solar panels that provide emissions-free power. The idea is to use recycled lead from discarded car batteries to produce solar cells using perovskite “organo-lead halide perovskite”. This technology has rapidly progressed from initial experiments to a point where its efficiency is nearly competitive with other types of solar cells. Perovskite technology identified its use of lead as a drawback. Researchers claim that using recycled lead from old car batteries can save the environment insteed of the energy and waste demanding lead mining. Also, such technology can benefit from excess lead in the future markets because of production of new lead-free batteries.

Production of “perovskite” solar cells is relatively simple and economic as the process can be done at low-temperature with reduced number of steps as compared with the manufacture of conventional solar cells. So, it would be “easy to get to large scale cheaply”. Questions still remain (https://www.businessspectator.com.au/article/2014/8/19/solar-energy/revolutionary-perovskite-solar-cells-could-be-game-changer-questions) about how this technology become sustainable: (1) would large-scale production require additional lead mining as lead-recycling is currently used to produce lead-batteries, i.e. before there is complete shift to new car-batteries?; (2) would lead used in this technology be capsulated with no leak to the environment under the life-time of solar cells?; (3) would the life-time of “perovskite-based” solar cell be as long as traditional solar cells?

http://www.renewableenergyworld.com/rea/news/article/2014/08/recycling-old-batteries-into-solar-cells?cmpid=SolarNL-Tuesday-August19-2014

Internet, Quality of Knowledge and Sustainable Socio-Economic Development

“Knowledge” is needed in all sectors and on all levels in any society, however the content of knowledge for achieving “sustainable socio-economic developments” needs not necessarily to be of the same components, structure and organization. To bring about changes and developments in any society knowledge has to be “fresh” in the sense that it has to be up-dated or “refreshed” not only to mitigate historical imparities but also to meet emerging necessities and to have capabilities and instruments to deal with any future known or unknown challenges. Knowledge has, also, to be individually adapted to maximize engagement and integration of all citizens and stakeholders for the benefits and welfare of the society.

In our ICT-based “Information Communication Technology” societies there are huge capital and diversity of knowledge resources, though needs of more knowledge still remain to be among essential priorities. Problems and difficulties in many societies for bringing about changes, especially what regards sustainable developments, are not a priori related to availability and accessibility of knowledge but rather the management of knowledge in terms of structure, transfer and adaption on both vertical and horizontal levels. In this context, instruments for appropriate coupling of science and technology to society and market needs is an imperative part of structuring, transferring and adapting knowledge. This is the essence core of successful knowledge-management policies where the coupling goes through citizens and stakeholders, i.e. within and between the very building blocks in the society, i.e. “individuals” and “groups”, in all society levels and sectors.

Services, i.e. serve and get served, production and consumption have to be shaped and based on sound economic policies involving all basic sustainability requirements, i.e. the conservation and protection of natural resources. If all natural resources are consumed, wasted and/or degraded, then it wouldn’t be possible to have life any more. In a knowledge-based society difficulties don’t exist in how knowledge can be obtained and how “citizens”, as carriers, transformers and generators of knowledge, can be engaged to form and shape “consumption”, “production” and “services” for the benefit of their society. The optimum functioning of any society is therefore a balance of these components: why knowledge is needed; what and when knowledge is required; how can knowledge can be produced, transferred, disseminated and propagated.

A major part of the capital knowledge of humans is stored in “virtual memories” around the world. However, such knowledge is accessible but not necessarily affordable for everyone. The Internet provides knowledge with variable quality and in a very scattered and random way though search engines may provide certain limited structuring. Traditional sources of knowledge through libraries are still important sources to “on-line” publishing with excellent audio-visual illustrations and “open-access” versions. In social and human sciences, for example, morals and ethics can be biased by historical misconceptions with negative impacts on freedom of speech as expressed by the public on the Internet. Quality of knowledge is, therefore, essential not only for sustainable socio-economic development but also for lasting security, safety and political stability.

Issues and topics of relevance for achieving socio-economic developments around the world are being discussed and detalied in http://sustain-earth.com

Sweden ‘Most Sustainable Country in the World’

According to a report by sustainability investment firm Robecosam Sweden is ranked as the most sustainable country in the world. But why? and such a status was achieved? What long-time is took to get their? and how it was possible to revert Sweden poverty to what Sweden is today?

Some reasons are its use of renewable energy sources and low carbon dioxide emissions, as well as social and governance practices such as labor participation, education and institutional framework.

Follow http://sustain-earth.com to know more about sustainability.

http://www.environmentalleader.com/2013/08/19/sweden-most-sustainable-country-in-the-world/

Water Quality is Essential for Ecosystem and Human Health

Water quality is often understood in its narrowest meaning where the focus is limited and reduced to portable water. Often at homes, schools, and communities as well as even among policy-makers and politicians, especially in developing countries, the knowledge is still limited to drinking water. This can be true on short-term and small-scale levels to secure affordable and accessible water resources with acceptable quality to mitigate immediate and epidemic impacts on human health.

However, this understanding has generated serious and widespread global threats with disastrous impacts on ecosystem and human health worldwide. This is evident from historical “palaeo-environmental” data that gives information on evolution of water quality and its degradation in natural water resources, e.g. rivers, lakes, reservoirs, marine coasts, wetlands and groundwater. Long-term and large-scale monitoring of the quality of natural water resources and associated impacts on eco-system and human health are IMPERATIVE and there are standard ways to do such studies. Typically, there are two approaches: (1) continuous monitoring of contemporaneous water quality status, such as those given in the present report given in the provided link; (2) full historical records on the evolution of water quality due to point/diffuse pollution sources.

Both approaches are necessary have different and important benefits. The first one is used for “Early Warning” with direct coupling to enforce regulation and laws on stakeholders regarding production of waste/pollution, also to take necessary measures and solutions to cope with the threats, and to give relevant information to the public. While, the second is important for uncovering long-term and large-scale impacts on water quality, e.g. acidification, eutrophication, chemical pollution, other industry/agriculture associated threats and climate impacts. It is, also, useful for assessing consequences of environmental and ecological impacts of pollution/waste in terms of their cycles from source to sink. This outcome of the seconds approach has feedback impacts on international laws and regulations and for implementation appropriate rehabilitation strategies.

 

Click to access water_quality_human_health.pdf

Revealed – Solar Panels Are Far From Being Carbon Dioxide and Pollution Free

Solar panels don’t come falling out of the sky – they have to be manufactured. As is the case in any production of electronics and computer chips, this is a dirty and energy-intensive process. Raw materials have to be mined, transported and treated,  i.e. quartz sand for silicon cells and other metal ores for thin film cells. Treatment requires different steps, e.g. purification, crystallization and wafering, also deposition). Upgraded materials have to be manufactured into solar cells, assembled into modules and transported. These steps brings with them air pollution, heavy metal emissions, and they consume energy and add more greenhouse gases to the atmosphere.

How electricity from solar panels is generated (existing three scenarios of energy mix), in which part of the world (solar insolation), and for which purpose (energy generating or energy guzzling equipment) solar panels are being used, these factors allow more appropriate assessment of the ecological burden of solar panel technology. Additional relevant factor for full assessment are how solar-technology is likely to develop in future and manufacturers warranties of life expectancy versus existing consumers laws/incentives. With these factors more realistic conclusions can be deduced what concerns “energy-ecological assessment” of solar panels.

Now What is New and have to be taken in consideration. First, solar cells are far from a zero emission technology, they do add pollution and carbon dioxide to the environment, and with considerable amounts. Solar panels can be a doubtful choice in less sunny regions and solar panels mounted on gadgets are completely insane. Solar cells should be recycled but who would do it, would the huge amount of waste be transported all the way around the world to the manufacture? Also, some law or incentive should be introduced to guarantee longtime of life expectancy so as the technology can survive. If possible and as an important conclusion, solar thermal power should have priority over solar PV power.

These facts mean that ALL SUSTAINABILITY factors should be taken in consideration for the best promotion of solar technology. For example, it’s much better using solar panels to make energy generating equipment instead of energy guzzling equipment (like computers, mobile phones and car electronics). It should be realized that solar panels first raise the amount of greenhouse gasses before they help lowering them. If the world collectively would embark on giant deployment of solar energy, the first result would be massive amounts of extra greenhouse gasses, due to the enormous production of the cells. Rush using a technology that is still developing and to accept it as universal solution anywhere and for anything wouldn’t be the best eco-friendly optimized solution specially that the recycling-technology of used solar panels is not yet in place. Recycling-technologies and handling of waste and pollution of all types of industries are IMPERATIVE for conservation and protection of natural resources and the environment.

Solar planels can be only used as energy resource but petroleum “oil” is not just a fuel but thousands of products can be processed and produced from petroleum (http://www.ranken-energy.com/Products%20from%20Petroleum.htm). About 54% of petroleum is used for the processing of these products and their production doesn’t necessarily yield carbon dioxide and/or pollution and recycling technologies of these products are already in place.

http://www.lowtechmagazine.com/2008/03/the-ugly-side-o.html

Lessons to be Learned – 25 Biggest Man Made Environmental Disasters Of History

Our environment, in particular water, land and air, has been the victim of all sorts of attacks, either of natural, e.g. hurricanes and earthquakes, and/or of man-made origins. Waste and pollution from man-made activities such as wars, explosions, accidents, chemical spills, etc. has caused enormous threats to all life forms on earth. This video gives a summary on the 25 biggest environmental disasters of history, however waste and pollution remain to be major threats for all life forms on earth.

Reports from the Highest point on Earth – Are there dead bodies still on Mount Everest?

Follow our Guest Blogger Rajendra Nhisutu who brings to you interesting information from the highest point on earth. “Sustain-earth” extends its activities for mintoring and reporting on the environments at every corner of the earth and all the space around it. Conservation of natural resources on the planet is essential for sustaining life on the earth and improving its quality.

There Are Over 200 than more Bodies on Mount Everest, And They’re Used as Landmarks and most bodies still remain on the mountain frozen in time.

Is there any Mission/Agency on Earth who can help handovering to their family?

May the souls of the dead rest in peace!!!

“PLEASE don’t leave me,” the dying woman cried. Two climbers heard the screams of Francys Arsentiev, an American climber who had fallen after succumbing to snow blindness and found herself separated from her husband. They were in the death zone, they were low on oxygen, and the woman was on the side of a steep cliff; carrying her was not an option. The trip just to get down to her would be a risk of their own lives. Despite the risks, the two climbers – Ian Woodall and Cathy O’Dowd – climbed down to her and did what they could to give her assistance.

But it was too late. Ian and Cathy administered oxygen and tended to Fran, but there was nothing they could do. They returned to base camp to seek help and report their findings.

Eight years later the two climbers would return (above). In an attempt to give Francys a makeshift high-altitude burial, they would place an American flag on her body along with a note from her family.

At the time of Francys’ death in 1998, no one knew what had happened to her husband and climbing partner Sergei. He had been climbing with her and had disappeared around the same time; all that had been found were his pick axe and rope. On the day Francys died, other climbers had last seen Sergei far ahead of Francys on the descent after the two had accidentally become separated.

Looking for his wife, Sergei later backtracked toward the summit despite knowing he did not have enough Oxygen to last. His exposure to the harsh conditions on Everest so far had been all he could handle, and he was beginning to suffer from frostbite. Still, Sergei would not leave his wife behind.

Sergei had made his way back to Francys, and descended toward the cliff she lay on as she screamed for help. Sadly, he fell to his death trying to reach his wife.

Possibly the most famous body on Everest is that of “Green Boots,” an Indian climber named Tsewang Paljor. Paljor was a Constable with the Indo-Tibetan Border Police who took his last breath on the 10th of May during the famous 1996 Mount Everest Disaster. Paljor was part of a three-man group that was attempting to be the first Indian team to ascend Mt. Everest from the Northeastern route. The weather that season was worse than otheryears and 1996 proved to be one of the deadliest seasons for Mount Everest climbers. When the storm rolled in, visibility went to zero and the temperature dropped considerably. Separated from the climbers in his group and suffering from the cold, Paljor found a small cave and huddled inside for protection from the elements. Little did he know that would be his resting place for the next 15 years.

One of the more storied climbers that met his fate on Everest was George Mallory, a famous English Mountaineer. In 1924, Mallory fell to his death during a storm while attempting to be the first to reach the summit of Everest. His body was discovered in 1999 during the Mallory and Irvine Research Expedition. Decades earlier, Chinese climbers had reported seeing a “European body” laying face down on a shelf off the main trail. Given the description and the date of the find, experts had always assumed it was the body of Andrew Irvine. Irvine was another famous English Mountaineer who had attempted the ascent of Everest with Mallory and perished in the same storm.

During a 1933 Everest expedition, climbers found Andrew Irvine’s axe and rope. Because of this, it was widely believe to be Irvine’s body discovered by the Chinese. When the body was found during the 1999 search expedition, it was discovered to be that of George Mallory, not Irvine. Mallory was found face down in a bunch of shale with his arms spread out and up. His skin was in remarkably good condition but was tanned from 75 years of sun exposure. After examining the body, experts hypothesized that Mallory’s rope had failed as he was found with a short severed rope tied around his waist. He was also found with a golf ball-sized hole in his forehead, indicating he might have suffered blunt force trauma from striking a sharp rock. Andrew Irvine has never been found.

A more recent story is that of David Sharp. David was an English mountaineer who, in 2005, ascended Everest in a group but attempted the final climb by himself. At one point he stopped in a small cave and eventually froze to the point he could not move. As he lay near death below the summit, he was passed by over 40 other climbers both on their way up and their way down.

Sharp had stopped to rest and protect himself from the elements in the same cave Green Boots had used. Since David was not moving, the 40 climbers that passed by had either not seen him or assumed he was Green Boots. A group of sherpas in a later expedition on the way up to the summit noticed Sharp just off the trail, alive and moaning. When the sherpas reached David, he was not coherent and badly frostbitten – but he was able to say his name and which party he was with.

After giving David some oxygen, the sherpas attempted to help him climb down but he could not stand under his own power. Realizing Sharp was not going to be able to move, the sherpas pulled David into the sunlight hoping the sun exposure would warm him up. By the time the sherpas returned to camp to report their find, David was dead. The last party to see Sharp alive was the documentary crew filming the ascent of double-amputee Mark Inglis. Since they were filming, they had cameras rolling when they approached David and the footage was used in the documentary.
If any suggestion please contact to Rajendra Nhisutu, Chair of HIMET organization (mounteveresttower@gmail.com)
Kathmandu, Nepal

Author name: Rajendra Nhisutu
Speciality and expertise: Climb for Cause
Sector/Affiliation: HIMET Organization, Nepal
Adress: Kathmandu, Nepal
E-mail: mounteveresttower@gmail.com
Mobile: +9779843097740
Type of contribution: Posting

Safe Water and Air – Fresh, Clean and Healthy Are Essential Qualities for life.

Safe water and air are essential for all life forms on earth and there are “safety limits” where water and air can turn unsafe, dangerous or even toxic. Healthy water is carrier of nutrients and healthy air is carrier of oxygen and carbon dioxide (with specific composition), both of which are required for healthy life. Healthy water and healthy air are, also, fresh and free from toxic matter “clean”, under such conditions all forms of life are healthy.

Fresh water, fresh air and healthy eco-systems are related in complex web of functioning, interactions and metabolism. Nature managed to great extent to “clean” itself, to optimize and fix all life parameters in an extremely accurate and delicate balance. Evolution of life on earth struggled for millions of years to bring about perfect living environments and climate conditions. As a reslut of such long struggle earth provided humans with healthy food. What didn’t happen over-night we succeeded to change over-night. We are competing more and more to degrade the life quality on the earth and we are succeeding.

The water and air we are polluting are the raw material and the natural resources for our life. If we ignore them and don’t take care of them, i.e. make them fresh, they wouldn’t care about us and they will ignore us. If we turn them to victims, they will also turn us to victims!

file:///Users/farid/Desktop/Chemical%20pollution%20of%20European%20waters%20is%20stronger%20than%20anticipated%20%7C%20Science%20Codex.webarchive

Pollution – Act, React and Interact to Save Water Quality and Sustain Eco-Resources.

The role and involvement of individuals in achieving sustainable water resources is becoming an important component in water management. Understanding how to act, react and interact to protect water resources involves understanding the major components that influence water quality of the natural water resources.

“POLLUTANTS” that influence “WATER QUALITY” have different “SOURCES” and get mobilized to  “WATER SYSTEMS” by various ways and dynamics by which water move and get transported from one place to another “HYDROLOGY”. How pollutants get mobilized is dependent on the “USES” of water and the “Practices” utilized by all involved stakeholders/consumers. In order to take part in SUSTAINABILITY SOLUTIONS it is essential to understand how different pollutants are produced from various sources and stakeholders, their pathways and their impacts of on water quality. This allows active participation in sustainable management of water resources.

Exporting Waste to Future Generations – Peak Waste By The End of 21st Century

The human waste is growing faster than the increasing global population. By the end of this century, the production of waste is expected to peak at three-times today’s current generation rate. Urbanization “Cities” is supposed to be the best bet we have to meet global poverty reduction targets through feedbacks on wealth, culture, and innovation. However, there are many severe negative impacts from urbanization on environmental conditions in particular aquatic and ecological qualities as well as the global biodiversity. Urbanization is taking place and expanding so rapid that it is, at the same time, bringing with it huge shares of the world’s GHG “Green House Gas” emissions, increasing decline in biodiversity, lots and fast generation of amounts of solid waste.

If we don’t urgently invest and put huge efforts in management of our waste and mitigating their impacts on water, eco-systems and biodiversity future generations will be forced to spend their lifetime in environmental and ecological bankruptcy resulted from our “production-consumption” civilization. Most of the time for future generation, in particular in the next century, have to be spent not only for searching about food but, also, for finding non-toxic and healthy food. The priorities of the next century will shift towards fighting against increasing degradation of environment and water resources; putting more resources, energy and efforts in waste-treatment, fighting against diseases, spending much of their resources on medication and protection from pollution and waste.

http://blogs.worldbank.org//sustainablecities/peak-waste-and-poverty-powerful-paradox

World Bank Energy Policies – Is Ecological Water Quality taken in Consideration?

Decisions of what type of energy resources we should invest in have long-term and large-scale impacts on the ecological quality of water and soil fertility. One issue, which is not very well searched, is the impacts of hydropower on the ecological quality of water that gives rise soil fertility. Both the ecological quality of water and soil fertility are very important for biodiversity and food production.

Hydropower is by definition a major interference in the natural hydrological cycle of surface water where erosion at up-stream high-land regions is essential process for promoting soil fertility in river catchments and river deltas in down-stream and low-land regions. In previous cases, e.g. the Aswan high-dam, the natural fertility at down-stream and delta areas was mitigated by heavy use of artificial fertilization. Artificial fertilization will not last for long-term as it is a non-renewable resource in addition to the long-term and large-scale environmental risks associated with it in terms of use and production.

In most of the energy debates the focus, so far, has been on reduction of carbon dioxide “green-house gas” so as to minimize the effect of global warming and its associated impacts. That is of course necessary but at the same time we have to consider other major impacts on the water cycle because of “Water-Energy Nexus” and in this context we have to take such aspects while we are about to implement policies for the use of “oil sand” or tar sand”. “Oil sand” or tar sand” is another case where in addition to risks for increased carbon dioxide emissions, there are clear negative impacts on water and ecological qualities.

Though the negative impacts of hydropower on ecological water quality and soil fertility may not be of the same dimensions as the benefits from hydropower, such impacts have to be taken in consideration for optimization of overall long-term and large-scale uses of “Water-Energy” resources. What we need to do is to have appropriate “Environment Assessment Analyses” and “Sustainable Actions” in place, so as to be prepared to deal with the growing degradation of water and ecological qualities.

http://www.dailytimes.com.pk/business/21-Jun-2014/world-bank-prefers-financing-hydel-projects

Water Challenges and Management – World’s 36 Most Water-Stressed Countries

World Resources Institute “WRI” has recently evaluated, mapped, and scored water risks in 100 river basins of 180 nations around the world. Assessment is carried out for the first time on country-level with consideration to area and population. In this research 36 countries face “extremely high” levels of baseline water stress. This means that more than 80 percent of the water available to agricultural, domestic, and industrial users is withdrawn annually — leaving businesses, farms, and communities vulnerable to scarcity. Baseline water stress, used as an indicator, measures how much water is withdrawn every year from rivers, streams, and shallow aquifers for domestic, agricultural, and industrial uses.

Analyzing water risk at the country level is important as such information is highly relevant for country’s economy, environment, and communities. Though water data is usually collected and reported at local geographic scales, water-related decisions and investments are often made at much larger scales, thus requiring country-level information.

Extremely high water stress can be successfully managed such as in the case of Singapore. The country is densely populated with no freshwater lakes or aquifers, and its demand for water far exceeds its naturally occurring supply. Singapore invests heavily in technology, international agreements, and responsible management, allowing it to meet its freshwater needs. Advanced rainwater capture systems contribute 20 percent of Singapore’s water supply, 40 percent is imported from Malaysia, grey water reuse adds 30 percent, and desalination produces the remaining 10 percent of the supply to meet the country’s total demand.

An important issue in this respect which is still lacking in many parts of the world is spatio-temporal water quality maps where pollution sources, both point and diffuse, are being identified. This is of importance for better conservation and protection of water resources as well as for building up solid monitoring programs for assessing the status of surface-/ground-water and associated eco-systems. Such programs give access to base-line data of natural levels of pollutants, provide bases for early-warning systems and facilitate rehabilitation actions

http://www.wri.org/blog/2013/12/world’s-36-most-water-stressed-countries

The Arctic Dilemma – Nomadic Life or Boarding Schools?

Nomads, 30-40 millions in 1995 around the world, roaming around and moving from one place to another for pasture or hunter-gatherer is a fast disappearing life-style. Reindeer have been herded for centuries in polar and sub-polar regions, horses remain national symbols in Mongolia and camels are still the perfect choice in the Sahara. After the industrial revolution “mechanization” and with increasing dependence on fossil-fuel, urbanization became “magnets” causing considerable drainage of people to technology and modern life, even without basic knowledge about the requirements and threats of the new life.

“There’s no place like home”, but with the advance of science and technology the definition of home becomes much different in particular in the era of globalization and the Internet. The choice between staying home and being drained to new life-styles may create conflicts between generations and communities or at least cause separation and fragmentation in families.

The weather in the polar mountains can turn in just a few minutes and at the artic circle conditions can be extreme. The ways of life, learning and even childbirth are often intense. People living in the tundra are accustomed to a nomadic life. Tents are their homes, food is basic, and the deer is king. They don’t watch TV or don’t use internet. Children do go to boarding schools, but not all parents are in favor of them. A well-known writer and teacher created her own alternative education for the children of the tundra as she believes that a good education should be based on the essential skills needed to survive in the artic far north. She explains that our constitution clearly says our indigenous children must have free education but it doesn’t say free life care. In schools everything is done for the children and later on they face life without to know how to do ordinary things, as they don’t have that knowledge when they leave schools. Children become gradually separated from their roots, loose ties with other generations and when graduated from school they have to decide between going to higher education or back to the tundra. What to choose when they already separated from home and are not able to establish roots at home?

Find out more about life and education in the tundra.

Siberian Hermits Who Didn’t Know That World War II Took Place!

This is a lesson to be learned about how previous generations survived the extreme conditions on earth, i.e. somewhat similar to the environment of the ice ages.

Agafia Lykov born 1944 in the Siberian wilderness, she has a very unique and rare story. Today she is still remaining alone, isolated in one of the most extreme and inhospitable environment on our planet. She is surviving steadfast in her seclusion in the Sayan Mountains, 160 miles away from any other sign of civilization. Agafia’s family that escaped persecution and moved to Siberia in 1936 became famous in 1978 when Agafia was discovered by a team of Russian geologists. This event marked the end of their isolation and Agafia’s family became famous in Russia as the family of Siberian hermits who didn’t know that World War II took place!

See and follow this interesting story how a single person turn severe environments to a sustainable living home.

Siberia – Life in Coldest Inhabited Area on Earth at Down to Minus 71 Degrees Celsius!

To understand the importance of temperature for the sustainability of life on earth we have to examine how our environment looks like in different climate zones, i.e. at different average temperatures around the year, with different ranges and extremes of temperature. These are central in climate issues and the ongoing debate on the impacts of global warming.

How cold is cold and how hot is hot is, for several reasons, important for us to know. This is not only vital for our lives and living environments but also how the technology we are dependent on in our houses, cities and villages operates. Temperature has several impacts on biological, chemical and physical reactions/behavior of everything around us. Human bodies, for example, have an optimum universal temperature of 37 degrees Celsius for healthy functioning and few degrees change in this temperature may indicate threats and even endanger lives. For other species temperature is also important, elephants wouldn’t survive in Siberia as much as beers wouldn’t exist in “Death Depression”. However, reindeers are perfectly suited for Siberia and camels can survive the harsh conditions of Sahara, deserts and even the heat of “Death Depression”. Temperature has several impacts on water, in hot arid zones you would never find fresh surface-water as is the case of “Death Depression”, and at the very low temperatures of Siberia you wouldn’t find water running on the surface either, i.e. only snow or ice. In both cases, you would have either desert or “permafrost”, i.e. permanently frozen soils, with little on no possibility for agriculture, food, controlled animal husbandry and production.

What concerns technology, there are no need for refrigerators in Siberia and no need for warming houses by fire/electricity in Kenya or Tanzania. Construction of ventilation, water piping and sanitation facilities as well as transport, communication and health-care infrastructures can be much different in very hot and very cold areas. Costs and operation of public and private services and infrastructures would be much different at extreme temperature and weather conditions. We have to take in consideration that different extreme temperatures mean different extreme weather conditions as well. In some cases, functioning and maintenance would be costly, technically complex or even unrealistic. Also, for the agriculture, i.e. food, feed, fuel and fiber production, consumption and conservation of natural resources.

We can feel heat/cold through the “sense” of our skin that has “sensors” to tell about the how hot/cold objectives around us are. But, this is in narrow limits of temperature range “hot/cold” and with cost of damaging the skin and/or the body. Thermometers or heat/cold “sensors” are much better instruments to measure the temperature, i.e. the property that describes how hot or cold things are and in terms of absolute units. Among international units to measure the temperature is degrees Celsius, however other systems of units exist, e.g. degrees Fahrenheit in the US. Anders Celsius, Swedish scientist, came with the elegant “Celsius” scale for measuring the temperature by relating it to the properties of water at sea level, i.e. where the atmospheric pressure is defined to be normal. The zero degrees Celsius is where water gets frozen and 100 degrees Celsius is when water boils.

Additional examples of life conditions at extreme temperatures and weather conditions will be given and described on other occasions.

http://www.policymic.com/articles/80809/12-incredible-photos-of-the-coldest-city-in-the-world

Dubai – Youthful promise by SynergY marks World Environment and World Ocean Days with tree plantation

World Oceans Day is celebrated around the world every June 8th, following the World Environment Day on 5th June. SynergY youth group in Dubai made a promise for the ocean by planting 50 trees at Green Mountain MRF supported by Dubai Municipality at the landfill area in Dubai on 7th June’2014. Nearly 1200 trees have been planted at various landfill and waste management sites in a short span in Dubai and 50 more added today. The Members also took interesting selfies near the Mamzar Beach to seal their pledge. These pictures showed the deep commitment this group has to raise awareness and get the community engaged in to support environment. The theme for World Oceans Day for 2014 is, “Together we have the power to protect the ocean!” and that of the World Environment Day was “Raise your voices and not the sea level”.

Simran Vedvyas, the founder of SynergY explained how each and every act of ours can help reduce the effects of global warming which is the biggest threat to humankind as- ‘We throw away over 1/3 of all food that is produced, wasting precious land and water resources that have gone into its production. Food waste in landfills is one of the biggest contributors of the harmful gases that cause global warming. Warmer temperatures are melting glaciers causing sea levels to rise, threatening small islands and low lying cities around the world. We pose everyone to take pledge and ‘reduce food waste’ because this is the only way to make a difference in lives of our future generation’

Mr. Sadin Ismail Al Falasi, Head of Treatment Systems Unit from Waste Management Department, Dubai Municipality and other officials were present at the event to support and encourage the children in their endeavors. He believes that what this group is doing for the community is remarkable and also complimented Simran for her recent achievements and on receiving the John Muir Award for Youth Environmental Conservation Award and the International 2014 Eco Hero Award by Action for Nature USA, recently.

“We ask everyone to help reduce the “FOODprint” by managing the meals smartly, storing food, using leftovers, buying imperfect vegetables and encouraging the supermarkets and restaurants to cut their food waste”, is the message disseminated by the members of this group.

The group celebrated the World Environment Day by visiting the exhibition “Your Planet Needs You” by Dubai Municipality at Children City that encourages a scientific look into the future of Dubai should we choose to take care of or ignore our environment. The visit to this exhibition gave a glimpse into Dubai 2050 as to how citizen of Dubai will survive global changes such as resource availability and the climate. The exhibition is an eye-opener into a scientifically designed future of our world, and is recommended for children, teens and families. The activities were CSR supported by Al Futtaim Carillion and Barakat Juices.

SynergY youth group has worked on grass-root level projects to raise awareness and fight against food waste which campaigns for reducing landfills. Making use of the Information and Communication Technology this youth group has innovatively used tools like videos, blogs, e-mails and shared the work on the social media to ‘reduce the food waste’. SynergY has raised awareness and environmental education through events, lectures, presentations about reducing waste that is filling the landfills and also planting trees and greening the landfill areas.

www.synergyouth.weebly.com
www.facebook.com/CosmoFoundationYouth

Author name: Simran Vedvyas
Speciality and expertise: Environment and Waste Management
Sector/Affiliation: SynergY youth
Adress: P. O.Box 30876 Dubai UAE
E-mail: simran.vedvyas@gmail.com
Mobile: 00971506526228
Type of contribution: Climate Action

Phosphorus Fertilization: Too Much of a Good Thing Can be Detrimental.

The economic benefits of phosphorus fertilization on crop production are well documented, also its importance for food security but is phosphorus fertilization free from risks and threats? or is too much of a good thing can be detrimental? If so, what are the threats and risks that are associated with the excesstive use of phosphorus.

Soil degradation is a worldwide problem especially with the inceasing damming of rivers around the world due to the need for hydro-electric power. Natural erosion that brings fertile soil to the low land and deltas are being halted as eroded materials are forced to accumulate behind artifically engineered barriers, i.e. the dams. As a consequence of damming of rivers huge land-areas loose their natural fartility and artificial fertilization is required for mitigation. This is, indeed, on short-term perspective both economically and environmentally expensive, and out-come are disastrous what regards the long-term and large-scale consequences.

Excessive use of phosphorus in agriculture for food production has negative impacts on water quality of aquatic systems (rivers, lakes and marine coasts) and groundwater due to increasing levels of P in aquatic systems that cause “eutrophication”, decreasing levels of oxygen and gradual decrease in fish productivity. Degradation of water quality of groundwater is associated with increasing agricultural waste/run-off. In all cases, there are associated costs for mitigation, rehabilitation and purification of water.   http://pubs.ext.vt.edu/424/424-029/424-029_pdf.pdf

Another critical issue in securing our future food is indeed missing from the global policy agenda: we are running out of cheap and readily available phosphate fertilizer on which world agriculture is totally dependent. Supply of phosphorus from mined phosphate rock could ‘peak’ as soon as 2033, as phosphate rock is a non-renewable resource becoming increasingly scarce and expensive. http://www.soilassociation.org/LinkClick.aspx?fileticket=eeGPQJORrkw%3D

“Sustain-earth.com” will represent an alternative and sustainable approaches for fertilization with several benefits over artificial phosphorus fertilization that can very well replace it. This alternative is WE-saving, i.e. can save both energy and water, it is environment friendly.

 

 

 

Julian Huxley – The Human Race Will Be the Cancer of the Planet.

Julian Huxley (1887-1975) a zoologist, educator and writer who played a leading role in the creation of UNESCO “United Nations Educational, Scientific and Cultural Organization”. For twenty years Julian Huxley was the Vice-President of the International Commission for the History of the Scientific and Cultural Development of Mankind.

Rivers, lakes and deltas, and their catchments are major freshwater resources for the world populations. However, the increasing impacts of waste, pollution and sanitation during the past century, in particular after WW-II, caused major damage and degradation in many river and lake eco-systems around the world. We give here few examples of the most polluted rivers around the world.

http://www.wunderground.com/news/worlds-most-polluted-rivers-20130627?pageno=9

Invitation – A NEW Logo For Sustain-Earth.

http://sustain-earth.com is a platform and a BLOG for integrating and marketing sustainability in education and research, and popularization of sustainability in science and technology. It supports “Open Access”. It has built-in functions and instruments for coupling education, research and technology with society, market and population needs on national and international levels. It, also, acts for promoting “Business-to-Business” and creating “Career-Development-Plans” for professionals and graduates in the emerging applications of sustainability and socio-economic developments. http://sustain-earth.com is an instruments and vehicle for developing and implementing applied sustainability in all sectors and on all levels.

LOGO of "sustain-earth.com" has three colours. Main colour of "earth" is green a product of  "blue" for  clean water and "yellow" for clean energy.

LOGO of “sustain-earth.com” has three colors. Main color of “earth” is a dynamic green-product of “blue” for clean water and “yellow” for clean energy. A green main arrow representing the functioning and metabolism of “sustain-earth” through fueling life by constant clean water “blue” supported by clean energy “yellow”.

To learn more and get introduction on “http://sustain-earth.com” please visit “ABOUT”. We welcome any questions and inquiries through “CONTACT”. You are, also, most welcome with innovative posts at “CONTRIBUTE”.

Lake Victoria – The Paradox of Water Use and Abuse.

Lake Victoria, the second largest fresh-water body in the world and a water resource shared by three East African countries, is an enormous water resource facing collective mis-management on several levels. Lake Victoria is under considerable pollution pressures causing softly and steadily killing of its bio-diversity in addition to a real risk for drying-up from “global warming”.

An example is Jinja town, population of 300 000 people, that is rising after so many years of decline to claim the glory it lost so many years ago. However, the time is running out not only for the town and its population but for the whole water body of Lake Victoria. There is an accelerating pollution, abuse of environment and water resources due to limited access to waste and solid-waste treatment from industry, agriculture, household, rubbish damp and sanitation. Many industrial (more than 70 factories in Jinja only with high pollution incidents) , agricultural, household activities are releasing huge amounts of waste and pollutants to Lake Victoria.

The fishing, transport of people and goods to the main land and other public services suffer from random management, fragmented policies, and lack of collective protection and management actions. Fish population is declining as consequence of the damage the food-web dynamics of the lake and the natural functioning and metabolism in the lake because of heavy loads of nutrients, pollutants and siltation. Over-fishing of  the so-called “fish-of-choice” a small fish lower down in the food-web that is destroying the natural balance of the food-web and causing the collapse of the overall fish-population dynamics.

Poor infra-structures and water drainage systems from forest, agriculture, household and sanitation along with erosion and re-suspension of sediments due to man-made and animal activities are causing excess delivery of nutrients, accelerating “eutrophication” and decreasing levels of oxygen and thereby death and increasing prices of fish. The degradation of water quality will, also, force gradual and rapid increase in the proces of clean water.