Category: Transport & ICT

Transport is movement of persons, animal and goods from one place to another where convenience is a primary request in long-distance transport. This applies to all society sectors and involves the necessary logistics from information flow and material handling to transportation and security. Complexity of transport and logistics is, further, effectively and economically managed by automated by dedicated software through modern ICT-technologies. Problems within transport (road, sea, air) have been of major technological challenge especially regarding safe, effective and economic transportation around the world.

Modern ICT “Information and Communication Technologies” have revolutionized and shaped our life style, culture and communication on all levels and sectors. The application of computers and telecommunications equipment to store, retrieve, transmit and manipulate data has far unlimited global benefits not only in business, enterprise, entertainment and education sectors, but generally in all disciplines of science and technology. In this context, ICT has been indispensable for improving technology and industry, including transport and logistics especially what regards control and automation. With the increasing coupling and integration of ICT technology in all society sector and the recent advances in “cloud computing” and “mobile apps” there are many new developments to expect in the future especially what regards achieving sustainable socio-economic developments, e.g. effective use, recycling and management of natural resources.

Would Modern ICT-Based Civilization Collapse As Previous Ones.

Advances of science, the transfer and use of technology require not only common languages but also effective communication and immediate transfer, validation and use of knowledge. These requirements are imperative for bringing about global, or at least regional, sustainably-based technological civilization. Though knowledge in itself has expanded enormously we are facing an ever increasing, if not accelerating, gaps between where knowledge is produced and where knowledge is needed.
Failure to bridge and narrow these gaps is likely to cause collapse because of expanding majority of outsiders that are more and more marginalized by the severe requirements from the minority that have unlimited access to knowledge.

This was the very reason for the collapse of many several previous civilizations, e.g. ancient Egyptian, roman, Islamic-Arabic, ….. https://fatarana.wordpress.com/2008/12/25/arabic-science-the-language/

(null)

Do You Agree? How A Nation Can Become Poor.

Serve and get served with focus on quality is how every citizen contribute in turning any society to wealthy and healthy place to live in. How to do it rests on three pillars: accountable and transparent policies; sustainable science and technology; and coherent and informed society. Though these three requirements can promote achieving sustainable socio-economic developments turning them to reality can take different approaches and pathways depending on cultural, geographical, socio-economic and political boundary conditions. Http://sustain-earth.com

http://m.sodahead.com/united-states/5-truths-you-can-either-agree-or-disagree-with/question-4547989/

(null)

Water Management Standards and Mitigation of Flooding

Flooding is among major threats in many countries around the world. Global warming is a modern man-made driver of negative feedback impacts on the global water cycle.

World Vision Australia is a member of the Australian Council for International Development (ACFID) and adheres to the ACFID Code of Conduct which defines minimum standards of governance, management and accountability of development for non-government organisations (NGOs). http://worldvision.com.au/home/defaultverD.aspx?lpos=top_drop_0_Home

To know more about flooding visit: http://montagepages.fuselabs.com/public/Benji-kun/Floods/3cc1dea9-0708-4b2a-a127-389832eea821.htm
(null)

University of California Television for Public Service

University of California Television “UCTV” embraces the core missions of the University of California — teaching, research and public service — through quality, in-depth television that informs, educates and enriches the lives of people around the globe.

University of California Television (UCTV) is a public-serving media outlet featuring programming from throughout the University of California, the nation’s premier research university made up of ten campuses, three national labs and affiliated institutions.

Launched in January 2000, this academic initiative embraces the core missions of the University of California — teaching, research, and public service — through quality, in-depth television that brings to life the tremendous range of knowledge, culture and dialogue generated on UC’s diverse campuses.

Reaching the public through cable, online, YouTube, iTunesU, Roku, and mobile apps, UCTV transports knowledge far beyond the campus borders and into the homes and lives of inquisitive viewers around the globe.

UCTV explores a broad spectrum of subjects for a general audience, including science, health and medicine, public affairs, humanities, arts and music, business, education, and agriculture. Program formats include documentaries, faculty lectures, research symposia, artistic performances and more.

UCTV also reaches specialized audiences, including K-12 teachers with “Teachers P.E.T.,” health care professionals with “The Med Ed Hour,” and the academic community through UCTV Seminars.

In March 2012, UCTV launched UCTV Prime, a YouTube original channel and the first university-run channel to be included among YouTube’s new production partnerships with recognizable brands in entertainment, news, lifestyle and education.

http://www.uctv.tv

(null)

Clean and Crime Free Environment – How, Where and When?

Clean and crime free environment to all living creatures on our earth is a mission humanity. This mission is not only limited to science and politics. Active contributions of all of us, our awareness of existing realities and our continuous support for scientific and political efforts are IMPERATIVE for achieving sustainable socio-economic developments worldwide. We are sharing one planet for living and our lives are dependent on sharing clean air, water and food. To have clean and crime free environment, not only for us but also for the future generations, we need to have all the necessary instruments, actions and efforts for conservation and protection of our common natural resources on earth.

http://missioncleanenvironment.com.au

Global Warming – Saving Planet Earth Requires Saving Much of the Fossil Fuel

Amazing conclusions from continuous and comprehensive global research that are based on all developments in science as a whole “big science”. They involve, also, integrated global observations on several scales and enormous human thinking and intelligence of the whole past century. It is how climate change shaped and formed global creativity (http://www.theguardian.com/stage/2014/nov/05/climate-change-theatre-2071-katie-mitchell-duncan-macmillan) to bring politics and science for a better future. A future we want to create and for generations to come. Climate change is not just about science – it’s about creating the future (http://www.theguardian.com/science/2014/nov/22/-sp-climate-change-special-report).

Saving is essential not only in economic terms but is also for the very sake of lasting survival, not only our survival but the protection and preservation of life on the planet. It took us so much time to arrive to the conclusion that “production and consumption” of natural resources, in particular fossil fuel, at the existing rapid speed is not more than destruction and annihilation of our life. It is a hard conclusion and inconvenient reality that much of the fossil fuel of the planet must stay buried and not to be burned. For the coming decades, until 2050 and beyond, the emission of carbon dioxide has to be cut down to zero which essentially mean much of the fossil fuel on the planet has not to be burned.

http://www.theguardian.com/environment/2015/jan/07/much-worlds-fossil-fuel-reserve-must-stay-buried-prevent-climate-change-study-says

 

Climate change creativity

 

Air Quality – The Southern Hemi-sphere has the World Cleanest Air

The accelerating urbanization in the world is bringing an increasing degradation in air quality (http://www.scgh.com/green-news/the-cleanest-and-the-most-polluted-cities/). While this is not reflected in life expectancy (http://en.m.wikipedia.org/wiki/List_of_countries_by_life_expectancy) yet, it is definitely causing emerging new health threats to the world population, as 70% will be living in cities by 2050. The life expectancy of humans on the Earth is likely to gradually decrease because of such threats and can very well show up in future statistics of the coming decades. What regards consumption of natural resources there are no definite answer on What is Enough? or How enough is enough? (http://www.mnn.com/leaderboard/stories/meet-the-woman-who-elevated-conservation-photography-to-a-whole-new-level). Facts on the role of urbanization on air quality, i.e. sources/types of pollution, are given in a document by United Nations Environment Program (http://www.unep.org/urban_environment/PDFs/handbook.pdf).

What is interesting and many of us may not know is that the world cleanest air is indeed mostly available in the Southern Hemi-sphere because of three reasons: (1) most of the land in the Northern Hemi-sphere is very much populated; (2) major parts of emission of atmospheric pollution is produced in the Northern Hemi-sphere; and (3) the atmospheric mixing of air between the northern and southern hemi-spheres is quite limited. The cleanest areas in the Northern Hemi-sphere are either above the troposphere, i.e. at elevated altitudes, or far away from emission areas, i.e. quite near in the Arctic region and/or quite near to the Arctic.

 http://www.travelandleisure.com/slideshows/the-worlds-cleanest-air

 

Africa – Would Minerals and Other Wealth Erase Poverty?

The Millennium Development Goals promised to reduce poverty by half by 2015. Why are Africa and India so far behind in reaching this target? Follow the Big Debate about “Why Poverty?” with panel of top world politicians, ministers, writers and policy-makers from UK, Nigeria, India and South Africa as well as participants from business leaders, academics, activists and students: https://www.youtube.com/watch?v=1JD7nB8tRc4&app=desktop.

Mining is one of the big industries in Africa that is supposed to contribute in erasing its poverty. However, though the enormous mineral resources in Africa, the question still remains “Does Mining Benefit Africa?”. Follow the Big Debate on this topic with focus on where the income and wealth of Africa’s minerals ends up? Is the benefit is still for the investors and not for the population? Would Africa be able to develop education, health, sanitation and transport infrastructures from such wealth? Are the taxation systems correct, accountable and transparent? Whether or not Africa is heading to an overall privatization, how would public services be developed? All in all would poverty is still remain when all the mineral resources in Africa are consumed?  Many facts and information are uncovered from top politicians, government and finance bodies, mining industries, World Bank, policy-makers and activists from Africa as well as representatives from international companies and others bodies of relevance to the topic.

Would we still hear the same story, again and again, a worker in the mining industry after 22 years of loyalty in a company reporting billions in profit still has no electricity, no sanitation and continue to live in poverty!

Nobel Prize 2014 – The Struggle for Lighting Everyday Life

One of the six Nobel Prizes that are globally awarded every year is devoted for inventions in Physics. This year “2014”  the prize was awarded for efficient blue Light Emitting Diodes “LED” which enables the production of bright and energy-saving white light sources. “LED”, used in the scientific and market communities, is replacing other sources of light with tectonic changes and transformations in the global lighting technology.

The interest of humans for lighting started already with the discovery of fire and the earliest forms of artificial lighting were made from natural grease-filled materials with fiber wick.  Ancient Greek philosophers were credited for the first peculations (500 BC) about the nature of light, followed by the first correctly attributed  vision to the passive reception of light reflected from objects by Ibn al-Haytham (1038 AD). The 17th century witnessed several progress in compound microscopes and refracting telescopes with advances in astronomy, e.g. by Galileo, Kepler and Snell. Further progress in nature of light was obtained from a long controversy between two theories: wave theory by Huygens (1629-1695); and particle theory of Newton (1642-1727). It was not until 1892 when the invention of the incandescent light bulbs, wire filament heated to high temperatures by electric current, were successfully completed by Thomas Edison. Through further advances in physics during 20th century, new knowledge and understanding was gained (http://www.canon.com/technology/s_labo/light/001/11.html) not only what regards the nature of light but also developing materials and laboratory procedures for production of artificial light by different types of lamps, e.g. ballast, fluorescent, compact fluorescent, halogen and LED (http://en.m.wikipedia.org/wiki/Lighting). LED-lamps, in addition of being most energy effective artificial light sources, have several exceptional versatile and advantages for smart mobile application and integration in renewable energy-based timely applications.  http://www.nobelprize.org/mediaplayer/index.php?id=2370&view=2

Many physical phenomena exiting in nature, such as light, has fascinated humans to search about their origin and some of us went more in depth to find ways to study them and even re-produce them not only on small laboratory scales but also for much more wider everyday life applications. This is how our science and technology keep advancing and transforming observations and abstract ideas to understandable and comprehensible realities with useful applications for human benefits. Innovations keep generating new inventions replacing less efficient, less accurate and less secure inventions to more efficient, accurate and safe products. This evolution in science and technology is important, essential and imperative for improving the quality of life on earth and for achieving sustainable socio-economic developments. This is not a straightforward process free from difficulties, constrains, disappointments, failure, mobility, pain, and even threats, accidents and disasters and above all the continuous and hard struggle to find the necessary resources, investments and partners. Some of these can have solutions and remedies through preparedness, lobbies and also systematic, gradual and continuous build-up of pre-required and introductory knowledge as well as collaboration and teaming up in consortiums.

Science and technology nowadays, also market dynamics, are characterized by being trans-disciplinary with diffuse barriers between disciplines, so classification to physics, chemistry, physiology/medicine and economy is introducing increasing pressures not only on researchers, management of research infra-structures and projects, top peer-reviewed journals and research-funding organization but also on career-development-plans, involvement and shaping of early-stage researcher as well as construction and management of higher education in general. Alfred Nobel’s Will (http://www.nobelprize.org/alfred_nobel/will/testamente.html) (http://nobelpeaceprize.org/en_gb/alfred-nobel/testament/) stated that the prizes “shall be annually awarded to those who, during the preceding year shall have conferred the greatest benefit on mankind” within the disciplines of physics, chemistry, physiology/medicine, economy, literature and peace. With the new era of trans-disciplinary and trans-sectorial requirements for achieving sustainable socio-economic developments new possibilities for awarding the prize are to be expected for joint inventions by physicists and chemists; physicists, chemists and physiologists; chemists and physiologists; physicists and physiologists; ……. etc as long as the inventions are contributing to the greatest benefit to mankind. Classification into disciplines is just to give equal chances and terms to all disciplines contributing in “the greatest benefit on mankind” including existing and emerging nexuses (water-energy, environment-medicine, environment-economy, …. where underlying sciences can be combinations of physics, chemistry, physiology or even economy for example) with impacts on “the greatest benefit on mankind” in particular life quality and the conservation and protection of natural resources. The scientific career, engineering endeavor, entrepreneurship, mobility, diverse, dynamic and global engagement of Alfred Nobel and his concern about safety and peace as well as his transparency, cultural, literature and art interests have all in all finally resulted in unifying humans towards the neutral goals of the hard issues of science and technology with the soft face of humanity as reflected in literature and peace (http://sv.wikipedia.org/wiki/Alfred_Nobel).

Tuning the mission of science, technology and economy towards achieving sustainable socio-economic developments has to be completed by global instruments to foster mutual respect across geographical, cultural and religious boarders for achieving peace within and between different generations (https://www.youtube.com/watch?v=R6VQpB4kGtQ&app=desktop).

 

Urbanization and Waste Management – Impacts on Conservation and Protection of Water Resources

Different forms of solid waste have diverse negative impacts on quality of natural waters. All humans, either directly or indirectly, produce garbage from household or/and waste and pollution from work places, i.e. private and public sectors. So, we all make it and we all hate it.

Surface and groundwaters, on various combinations and levels, are important parts of water resources that support the national economies and social developments around the world. In China for example, over 400 cities exploit groundwater and many of them use groundwater as the only source of supply. With this a series of problems emerge gradually just as river waters have been over-used and polluted in many parts of the world, so have groundwater. The governance of groundwater is becoming very urgent after years of researches on the nature and pollution mechanism of contaminants in the groundwater (also coupled interactions between surface and groundwater), i.e. pollution sources, the fate and transport of chemicals and organic pollutants. This in addition to increasing knowledge on landfills, leaking sewers, oil storage tanks, pesticides, fertilizer and septic tanks (http://www.intechopen.com/books/organic-pollutants-monitoring-risk-and-treatment/the-investigation-and-assessment-on-groundwater-organic-pollution). Some aspects on groundwater contamination and pollution in Canada are given at  (https://www.ec.gc.ca/eau-water/default.asp?lang=En&n=6A7FB7B2-1), new threats are also emerging from production and processing of oil sands (or tar sands). More about ground-water contamination and related threats in cities and many rural homes, that are dependent on the use of groundwater for drinking and other household purposes, are given at (http://oceanworld.tamu.edu/resources/environment-book/groundwatercontamination.html).

In this context, Europe has indeed the best waste performing countries in the world in terms of e.g. lowest percentage of landfills, highest benefits from recycling and energy gain from waste. Some examples are Estonia  (http://www.zerowasteeurope.eu/2014/04/and-the-best-waste-performing-country-in-europe-is-estonia/); The Netherlands (http://www.iamexpat.nl/read-and-discuss/expat-page/news/netherlands-has-the-best-waste-management-in-europe); and Sweden (https://www.youtube.com/watch?v=zAe4fVtPsCs&feature=youtu.be).

USA produces more garbage per person (230 000 000 tons every year) than any other country on the planet, it has biggest mega landfills and it is still lacking behind what regards recycling and waste management.

Zero-Carbon Tecnologies – From Divergence to Convergence of Eco-nomy and Eco-logy

The industrial revolution (http://sv.m.wikipedia.org/wiki/Industriella_revolutionen), the advance of science and technology during past centuries (http://en.m.wikipedia.org/wiki/20th_century) , and the associated accelerating “production-consumption” because of population pressures are taking us to new global tectonic shifts. The scream of nature and life on earth is forcing a new world order to bring about zero-carbon technologies for major cleanup of the atmosphere from all un-necessary emissions of carbon dioxide. Indeed, we should shape these shifts to a much more wider and inclusive cleanup from all toxic pollution and waste that are causing enormous and accelerating degradation of the atmosphere, the hydrosphere and the land. http://www.eia.gov/todayinenergy/detail.cfm?id=10

For many decades and even centuries there have been an accelerating divergence of the socio-economic twin “eco-nomy and eco-logy” with enormous feedback impacts on the functioning and metabolism of all life processes and qualities on earth. The convergence of the gap between eco-nomy and eco-logy is IMPERATIVE for achieving sustainable socio-economic developments around the world. Just some few examples from two most big economies in world the USA (http://www.eia.gov/todayinenergy/detail.cfm?id=10) and the emerging China (http://www.mining.com/china-the-worlds-biggest-energy-consumer-and-producer-72513/).

http://blogs.worldbank.org/climatechange/

We can dream to get a world which we can enjoy together in combinations of natural colors with positive impacts from worlds greatest music.

Globalization of Science and Technology – Accessibility and Affordability in New Cultural and Climate Context.

Living conditions on earth are highly dependent on climate and weather conditions that are primarily controlled by natural conditions on the earth and its position in the solar system. This is except the negative man-made impacts on the environment and climate that started with the expansion of world population and after the industrial revolution with observable effects on life during the past century.

So far, the major achievements of humans on earth have been dramatic. In addition to ancient civilizations, the past centuries have witnessed major global transformations that are brought about by enormous scientific and technical advances and innovation. Such developments and the associated fast urbanization, after the first and second world wars, have caused gradual marginalization, or even isolation, of some or even major populations in many regions around the world which is indeed the essence of increasing poverty, at least in relative terms. With the initial stages of the digital revolution such gaps have also increased though in the long run they would rather shrink because of increasing access to knowledge and the associated benefits from the “transfer-of-knowledge” and “exchange-of-knowledge”.

With the increasing globalization there are growing needs not only to understand and to know the life under “normal” conditions, i.e. less natural extremes in weather, but also to know more about how “normal” is “normal” under climate conditions that are drifting from the natural functioning of the earth’s system. In particular we need to widen our knowledge on the more extremes in harsh environments (http://www.therichest.com/rich-list/here-are-5-of-the-harshest-environments-on-earth/). Such understanding on the global level allows promoting and extending the applicability of science and technology. However, climate and weather conditions set severe limitations on the applications that can be based on scientific and technical advances and innovations. Remote cities (http://www.buzzfeed.com/adamdavis/the-most-remote-and-extreme-cities-around-the-world) and places at the end of the earth (Palmerston: The island at the end of the earth http://www.bbc.com/news/magazine-25430383) are few examples. Also, the living conditions of rural populations in particular “uncontacted people” or the so-called “isolated peoples or lost tribes”, i.e. who live, or have lived, either by choice or by circumstance, without significant contact with the more globalized world (http://en.m.wikipedia.org/wiki/Uncontacted_peoples). The increasing mobility and movement of people is bringing with it new needs for globalization of “cultures and traditions” rather than, and not only limited to or forced by, globalization of science and technology. Coupling science and technology to cultures and traditions is among difficult challenges in many places around the world.

In spite of the fact that our planet is undergoing a population explosion there are regions with declining populations because of increasing isolation. In the website below we will take you to places, e.g. the isolated areas of Arctic, Antarctic, canyons, deserts, Saharas, ……,  where it would be even hard to find a companion. It can even be much harder to survive in these places with the “affordable” technologies we have in populated urbanized regions. With this insight you will probably have a new appreciation for the people in your life, or you may probably prefer to stay where you are and do much better to preserve and protect your environment. Anyway enjoy these 25 most remote places in the world:

http://list25.com/the-25-most-remote-places-in-the-world/

 

LIMA CLIMATE CHANGE 2014-CONFERENCE – Political Responses & Achievements Since Discovery of Climate Change

Science is usually in advance of politics and technology and the implementation of both is usually, if not totally, associated with clear interests. Sometimes, not very often, politics and technology team up immediately whenever common and mutual interests are apparent especially with support of economic and/or power related advantages.

The history of the scientific discovery of climate change began early 19th century with various theories and arguments about possible natural and man-made drivers. In late 19th century and since 1960-1970 the warming effect of human emissions of greenhouse gases, in particular carbon dioxide, became more and more convincing. By 1990, scientific research on climate change expanded enormously with rich data explaining causal relations, links with historic and palaeo-climatic data with refined and validated numerical climate-change models. Climate change can be best described as change, significant and lasting, in statistical distribution of spatio-temporal weather pattern. Time periods of such changes can range from decades up to millions of years. The changes can be in average weather conditions or in the distribution of weather around the average.  (http://en.wikipedia.org/wiki/History_of_climate_change_science)

The enormous and accelerating pressures from the scientific community supported by huge convincing scientific data, observations and models resuled in political realization of the effects and impacts of global warming (http://en.wikipedia.org/wiki/Politics_of_global_warming). Though the evolution of the scientific discovery of climate change, unlike other scientific discoveries, took a long journey to develop still the political road map for realization of global warming, and implementation of mitigation actions, was still more complex. This is due to numerous factors that arise from the global economy’s interdependence on carbon dioxide and because it is directly implicated in global warming. Global warming is non-traditional environmental challenge as the impacts are global, relatively irreversible in terms of short-periods of time, i.e. because of the long residence-time in the atmosphere, act directly and indirectly not only on weather patterns but the global water cycle and have wide-range of impacts on the functioning and metabolisms of global ecosystems and biodiversity. Global warming is one of the most important man-made effects with considerable impacts on the sustainability of all life forms on our planet.

The UN Climate Change Conference opens today in Lima, Peru, and will continue until 12 December. The Conference includes the 20th session of the Conference of the Parties (COP 20) to the UN Framework Convention on Climate Change (UNFCCC) and the 10th session of the Conference of the Parties serving as the Meeting of the Parties to the Kyoto Protocol (CMP 10). Three subsidiary bodies will also convene: the Subsidiary Body for Implementation (SBI), the Subsidiary Body for Scientific and Technological Advice (SBSTA), and the Ad Hoc Working Group on the Durban Platform for Enhanced Action (ADP).

The document given below describes the political responses and achievements since 1992 where the first major global political engagement took place. The international political response to climate change began with the adoption of the “UN Framework Convention on Climate Change” UNFCCC in 1992, which sets out a framework for action aimed at stabilizing atmospheric concentrations of greenhouse gases (GHGs) to avoid “dangerous anthropogenic interference with the climate system.” The Lima conference will consider agenda items related, inter alia, to finance, mitigation, adaptation and technology. The COP will also hear a report from the ADP concerning progress made during the third year of its mandate to develop “a protocol, another legal instrument or an agreed outcome with legal force under the Convention applicable to all Parties” by 2015 to enter into force no later than 2020.

https://mail.google.com/mail/u/0/#inbox/14a0462ec4cdc2a7

Mining and Peak Resources – Would Celestial Skies Help Us to Survive on Earth?

Mining activities are among essential drivers for the global industry especially what regard the exploration, processing and production of raw materials necessary for technological production worldwide. For a global overview and up-to-the-date coverage check “Terrapinn – Total Mining” for information on exploration, investment, and development of miners, financiers and investors (http://blogs.terrapinn.com/total-mining/category/minerals/).

The growing fear of world industry to run out of raw materials there are intentions directed towards the moon. Professor Ouyang from the Chinese Academy of Sciences in an interview conducted by BBC News, states that China is in pursuit of natural resources up in the celestial skies as the earth’s mineral resources gradually dwindles, starting with the moon. “The Moon is full of resources – mainly rare earth elements, titanium, and uranium, which the Earth is really short of, and these resources can be used without limitation.”

If this would be the solution from where the energy resources to the outer space come from? And even if the needed energy would be available, what shall humans do with ever increasing amount of waste and pollution? Under these conditions would humans still have accessible and affordable quality of air and water for life? Few new challenge facing future generations.

http://blogs.terrapinn.com/total-mining/2014/02/28/chinas-moon-mining-pursuit/

Ebola – Key Questions and Answers on How To Protect Yourself

Information from “CDC” Centers for Disease Control and Prevention, USA regarding Ebola Virus Disease and protection of people. Check Key “Questions and Answers on Ebola” concerning: Personal protection against Ebola?; Has the “patient zero” been identified?; How do I know if I have seasonal influenza or Ebola? If I  am experiencing some flu-like symptoms (e.g. fever, headache, muscle aches).

What is “CDC” doing in the U.S. about the outbreak in West Africa?; Travelers: What is being done to prevent ill travelers in West Africa from getting on a plane? In West Africa, during travel and in the United States; What do I do if I’m returning to the U.S. from an area where the outbreak is occurring?; What do I do if I am traveling to an area where the outbreak is occurring? Should people traveling to Africa be worried about the outbreak? In the United States: Are there any other cases of people in the U.S. getting Ebola?; Is there a danger of Ebola spreading in the U.S.?; Why don’t we restrict travel to the United States?

Check with the local authorities in your counry if similar questions and answers can be applicable, e.g. elsewhere around the world.

http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/qa.html?mobile=nocontent

World Largest Power Station – How Huge is Huge in River’s Technology?

The Three Gorges Dam represents the accumulated knowledge and know-how from all previous worldwide advances in dam technology including finding solutions for a wide-range of side effects apart from the main goal of generating power. It is the world’s largest power station in terms of installed capacity (22,500 MW), a hydroelectric dam that spans the Yangtze River by the town of Sandouping, located in Yiling District, Yichang, Hubei province, China. It has several innovations and integrated solutions. Except for a ship lift, the dam project was completed and fully functional as of July 4, 2012, when the last of the main turbines in the underground plant began production. The dam has 32 main turbines, each with a capacity of 700 MW,  and two other smaller generators (50 MW each), with total electric generating capacity of the dam is 22,500 MW. The dam is intended, also, to increase the Yangtze River’s shipping capacity and reduce the potential for floods downstream by providing flood storage space. A partial solution for problems associated with the transport of nutrients because of silting behind the dam is, also, taken in consideration. Chinese government regards the project as a historic engineering, social and economic success, with the design of state-of-the-art large turbines, and a move toward limiting greenhouse gas emissions.

 

For comparison with the largest twenty dams in the world a global and historical survey is summarized  in this document: http://largest-dams.blogspot.se

Published on 31 May 2013
Largest Dams in The World

 

Urbanization and Future Impacts of Water Treatment on Natural Waters

Without proper water treatment healthy life in out cities wouldn’t be possible. To further couple the importance of water treatment to other sectors in the society we need some background information. This is described at http://en.m.wikipedia.org/wiki/Water_treatment

Also, how drinking water is made and how water treatment plants function is explained in:

With this background information and with the expected prognoses that 70% of world population will be gradually moving to cities during the twenty first century it is not clear how water treatment plant would cope with the increasing waste that is generated from human consumption, i.e. household, agriculture and industry. Unlike solid waste, which is subject to sorting in some parts of the world, wasted water from urbanized areas carry an increasing number and amounts of pollutants in their end products, i.e. effluents and sludge. Though water treatment plants may be effective to provide good quality of water, wastewater treatment plants however are not as effective in removing whatever exist in wastewater. This means that the net effect of urbanization is an increasing production and injection of waste and pollution that is delivered to natural aquatic water systems. This would, of course, provide large-scale and long-term threats on ecological water, and life quality, and will have negative feedback effects on “raw” water that will be later used in water treatment plants.

In summary we have an accelerating internal urbanization of water that generates waste and pollution as end products to be injected and delivered to the main natural global water cycle.

 

 

 

 

 

 

 

 

Urbanized Water – Evolution, Threats and Feedback Impacts on Natural Water

Natural fresh water, does it exist? We used to have high quality natural waters but this was probably more than a couple of thousand of years ago, i.e. just before the Roman Empire. Natural fresh waters are very hard to find nowadays, only in remote regions far away from human impacts, e.g. frozen water in polar areas or some fossil water somewhere underground.

The Romans invented the culture of urban water systems that exist today in our cities around the world. Gravity-fed systems distribute water, from water treatment plants, around cities and ultimately dispose wastewater in underground sewer networks. From the Romans time until today urban water systems went through major transformation forced difficulties originated from: water shortages during the Romans; cholera outbreaks in the Industrial Revolution; and most recently polluted surface water systems (lakes, rivers, …… ), e.g. in Europe and the US that accelerated shortly after WWII. We are now facing more and more complex web of serious threats on natural waters due to the rapid technological and economical advances of the past century, the growing world population and an accelerating “production-consumption” wheel as a result of many emerging economies. Climate change, pile-up of pollution and waste, aging urban water systems (both water and wastewater), various types of peaks in particular energy- and water-related ones, constrains in world economy and geo-political conflicts. You name it.

In this post “Sustain-earth.com” gives some background information of the evolution of urbanized waters and problems associated with wastewater treatment. In coming posts other urbanization-related issues will be given, in particular water treatment processes and the importance of the quality of natural waters on such processes.

Here is some description of how urbane water systems developed and the situation many cities are facing today. Urban water systems are starting to break down with these problems: 1) water infrastructure needs costly upgrades; 2) many sewer systems are becoming overloaded; 3) water scarcity appearing in drought-prone areas. Some possible fixes are, also, given: Water recycling, desalination, decentralization: http://www.vox.com/2014/10/6/6900959/water-systems-pollution-drinking-water-desalination

Wastewater Treatment Plants have impacts on the water quality of natural waters and there are growing fears that they are acting as pollution factories: http://www.riles.org/musings.htm

Also additional background information on how typical wastewater treatment plants work: http://water.usgs.gov/edu/wwvisit.html see also this video: https://www.youtube.com/watch?v=OocKzAowo_0&app=desktop