Category: Environment & Climate

All sectors of modern society can have impacts from environment and climate changes. There are two “groups” of waste and pollution, those with general impacts on the environment and quality of life, and the other group with specific impacts on climate and weather through the so-called global warming. However, there can be some overlapping between these two groups and induced effects therein. Achieving sustainable socio-economic developments depends on keeping good records and information on how our environment and climate are changing in terms of space and time. Air, water and ecological qualities are very much related to the consumption pattern of our common natural resources on the earth, also how we deal with our waste from household, agriculture and industries. Furthermore, waste and pollution can exist in different forms (gas, liquid and solid), originate from various sources and follow different paths of dispersion, and ultimately have different fates. Upon dispersion in the atmosphere, hydrosphere, ecosphere and in aquatic systems, pollution continues to interact with the biotic and abiotic components of the environment. Such interactions introduce degradation in climate, weather and the environment. Greenhouse gases, primarily from fossil fuel burning, cause global warming. Other types of pollution, e.g. heavy metals, toxic chemicals, acidic gases, agricultural and industrial waste, cause degradation of life quality and other damaging effects on the environment, water and ecological systems. Because of the existing and emerging competition on natural resources, and the diverse consumption pattern by stakeholders and industries, there are constant needs for developing treaties, conventions, regulations and agreements on all levels and sectors to protect the climate and environment and to promote sustainable socio-economic developments.

Part II of the ‘Sustainability in Science and Technology’ – The Human Performance.

The performance of humans is driven by diverse needs for food and security to overcome the challenges for decent live on Earth. 

This is an introduction to Part Two of the WEBINARS on “Sustainability in Science and Technology” – The Performance of humans’, hosted by sustain-earth.com.

Africa is the origin of homo sapiens and the renewables helped their evolution during millions of years and their migration out of Africa 70 000 years ago.

During the hunting gatherer era humans started to master artefacts and simple tools, also to build small communities and settlements. They domesticated animals, plants and learned to cultivate land and build shelters for their living.

The agricultural era that started 10 000 years ago culminated in an outstanding ancient Egyptian civilisation that lasted 3000 years. During this era people used water to promote agriculture, farming and to produce food. These achievements were made possible by taking advantages of renewable resources only, the sun (heat and light), water from the Nile and limited use of natural resources.

The mechanisation of agriculture in the 18th century during the first industrial revolution triggered increasing use of artificial pesticides and fertilisers. However, the limited water resources on Earth caused new needs for diversification of water production and management in order to have clean, affordable and accessible water for the growing population and the increasing urbanisation. The first industrial revolution involved various manufacturing processes supported by water and steam power.

The second industrial revolution in Britain was based on increasing electrification and use of combustion engines, rapid standardisation and industrialisation of many sectors in the 19th and 20th centuries. The widespread developments of the first and second industrial revolutions created huge pollution and waste in the atmosphere, the hydrosphere and the biosphere that continued and continued until now. New but limited renewable technologies, however, with zero net emission of green house gases started to appear by the end of the 20th century. This was due to the fear that fossil fuels are limited and have negative impacts on life. These developments were possible by more affordable access to renewable energies and the expanding use of alternating and direct current motors. Indeed, there are still several environmental challenges for scaling-up and scaling-out the renewables. Among these are the storage of renewables and integrating them in well-established grids. However, renewables and batteries require needs for new materials and further expansion of mining and processing that are dependent on heavy consumption of water and energy.

The third industrial revolution of digitalisation started by the end of the 20th century and opened new possibilities for increasing efficiencies and volumes of communication not only between humans but also between humans and machines, and between machines and machines as well.

The Information-Communication-Technologies and the Internet of Things will allow extensive and intensive expansion of Science and Technology with new gates for innovation worldwide on all levels and in many sectors. We have now many examples around the world which demonstrate that the boundaries between science fiction and technological realities are vanishing very very fast. We are, now, in urgent needs to proceed with the 4th industrial revolution and to continue with Artificial Intelligence and Machine Learning but with careful attention to the demands of renewables, preservation and protection of life.

Pre-announcement for Forthcoming WEBINARS 2021: Sustainability in Science and Technology.

The WEBINARS on Sustainability in Science and Technology will be hosted by sustain-earth.com. and will appear in 2021. They are coordinated by Professor em Farid El-Daoushy (Uppsala University, Sweden) and will be given by many professionals and professors from around the world. It is based on trans-disciplinary and trans-sectoral approaches to explain and detail several patio-temporal yet complex, wicked and interactive problems that piled-up over very long periods of time and caused the evolution of a new geologic era, i.e. the so-called anthropocene.

In part one, the natural drivers of life on planet earth, in the atmosphere, hydrosphere, biosphere and lithosphere, will be explained to give the necessary bases for understanding the boundary conditions of the natural climate and environment systems of the Earth. In part two the life-styles of humans ‘homo sapiens’ on planet since their evolution on Earth, and migration out of Africa 70 000 years ago, i.e. during different transitions and changes from the hanter gatherer era until now will be followed. Part three will give the impacts of the combined spatio-temporal interactions between human life and the planets’ own drivers on the global economic systems. Further part three will involve issues related to growth economy versus circular economy. In part four analysis of the performance of sustainability with reference to the first three parts will be done. In this context, resilience in human knowledge versus science, technology and innovation will be examined. These four parts together will give background information on ‘what, why and how’ what regards sustainability can be put together in a resilient framework to scale-up and scale-out science, technology and innovation to meet the UN-SDGs in order to achieve prosperity on planet Earth.

In summary the forthcoming WEBINARS can be described as follows:

Part One: The performance of planet Earth.

Part Two: The performance of humans ‘Homo Sapiens’.

Part Three: The performance of world economic systems with consideration to growth economy versus circular economy.

Part Four: The performance of sustainability. Resilience in knowledge versus science and technology.

Highly Recommended – All Our Food Is Nature Made. However ‘AI’ and ‘ML’ can Improve Food Industries.

Photosynthesis is the main reaction behind all life forms on planet Earth, it triggers life processes in global eco-systems on land and in aquatic systems (ocean, lakes and rivers). For photosynthesis to do its job and produce all forms of healthy and nutritious food that makes up global biodiversity, including us humans the ‘Homo Sapiens’ (https://en.m.wikipedia.org/wiki/Human) water is needed. Indeed, even if we say water is the origin of life, it isn’t totally 💯 correct as we still need carbon dioxide in trace amounts. An important question is high trace is trace? Even though we have water and carbon dioxide at the right concentration, we aren’t done yet, as we also need solar energy ‘light photons’ to initiate this magic reaction and the very secret of nature that evolved four billions of years ago, the ‘photosynthesis’.

There are many other imperatives that are needed for the natural photosynthesis to do its job properly and to keep it in tact with all the functioning and metabolism processes of life forms on earth apart from the reactants, i.e. water, carbon dioxide and the photon from the sun. We need healthy atmosphere and healthy hydrosphere, these underlying spheres of life are currently undergoing continuous degradation by us humans. This indeed imposes great threat for the proper functioning and metabolism of the very basic mechanism that fuels the life on Earth, i.e. the photosynthesis.

The atmosphere is important for agricultural sectors and farming, apart from supporting the forest eco-systems. Naturally healthy and fertile soils, are also needed, that have the right mixture of nutrients and free from toxic chemical remains and heavy metals. Also, soils need to have good water holding capacity which is regulated by the organic content. For the atmosphere to be healthy environment for the photosynthesis to take place on land, we must have suitable atmospheric composition, e.g. carbon dioxide concentration that allows having appropriate temperature, in addition to being a necessary component for photosynthesis. Also, not to have toxic compounds in the atmosphere such as nitrogen oxides that through photo-reactions can produce boundary-layer ozone that has negative impacts on growth of vegetation, in particular forests.

What regards aquatic systems we still need suitable temperature (which is dependent also on the heat-balance in the atmosphere) in water bodies, suitable pH as acidification from acidic nitrogen- and sulphur-oxides destroys the living-habitats of fish such the corals in the ocean, also it destroys the food-web and kills fish as in fresh-water lakes and rivers; suitable amount and levels of oxygen for breathing is also imperative in aquatic systems. Naturally, we need also other trace nutrients in particular phosphorus, nitrogen and potassium (applies also for healthy vegetation on land and agricultural production). However, excess amount of nutrients cause eutrophication as the water bodies become overly enriched with minerals and nutrients which induce excessive growth of algae. This results in oxygen depletion in the water body after the bacterial degradation of the algae. As an example is the so-called ‘algal bloom’ or great increase of phytoplankton levels. Eutrophication is often induced by the discharge of nitrate or phosphate-compounds, fertilisers or sewage into aquatic systems.

We humans so far failed to imitate nature, i.e. to do what is known as ‘Artificial photosynthesis’ which still science fiction. Would we ever have Artificial Intelligence ‘AI’ to cultivate our earth, produce our food and create an Artificial Biodiversity? ‘AI’ can create robots and machines that imitate us humans in many ways through collecting the patterns of our behaviour. Robots can’t run the life on our planet itself but they can be better version of humans through Machine Learning ‘ML’ and thereby replace humans to do many many jobs in food industries, and also many other industries.

The implementation of AI and ML in food manufacturing and restaurant businesses is already moving our industry to a new level of performance, enabling fewer human errors, less waste of abundant products, less infections. They also allow lowering costs for storage, delivery and transportation. They can create happier customers through timely and quicker service. Even they can allow voice searching, more personalised and effective orders. Robotics for big factories and restaurant businesses will occupy its niche very soon and will bringing more benefits in the long run. Both AI and ML benefit from the enormous flora of sensors, actuators in addition to digital coding and programming.

For more details on these issues see: https://www.google.se/amp/s/spd.group/machine-learning/machine-learning-and-ai-in-food-industry/amp/.

Being able to read all the article we invite you to follow us and subscribe to sustain-earth.com. Meanwhile enjoy these drinks: https://www.youtube.com/watch?v=DT53K9d0vUU

Introduction – Part One: The Three Main Drivers of Life on Planet Earth “Energy, Water and Natural Resources”.

Introduction to the forthcoming WEBINARS, hosted by sustain-earth.com, on “Sustainability in Science, Technology and Innovation ’SISTI’ of Water, Energy and Natural Resources”. Part One of the introduction – The three main drivers of life on Earth: “Energy, Water and Natural Resources WENR”. These drivers, by being dependent on the main underlying and interactive sphere of the Earth System (atmosphere, hydrosphere, biosphere and lithosphere) are decisive for the performance and quality of both the life on planet Earth and the life of humans.

These three drivers ‘WENR’ have, so far, sustained all life forms on planet earth. Energy from the sun triggers photosynthesis where water in the HYDROSPHERE together with carbon dioxide in ATMOSPHERE have been the bases of all life in the BIOSPHERE both on land and in aquatic systems. Minor amounts of earth’s mineral resources in the upper LITHOSPHERE are also used as nutrients in the evolution of biodiversity and associated eco-services we benefit from as well as the production of our food. Homo Sapiens are not only part of the global biodiversity but they are becoming the main actor shaping it. Homo Sapiens extended the production. use and consumption of energy, water and the natural resources in the atmosphere (where oxygen is also crucial for life), hydrosphere, biosphere and lithosphere (including fossil minerals) for their living. The extensive and accelerating use of these drivers has surpassed the natural capacities and boundaries of planet earth to sustain all its life forms.

These drivers are imperative to achieve sustainable prosperity through integrated and resilient economic, environmental and social synergies. They involve trans-disciplinary and trans-sectorial (nexus) interactions in the socio-environment-economic fabrics that are shaping the future our planet including all societies around the world. Incorporating Environment-Social-Governace ‘ESG’ is fundamental for healthy and wealthy economies around the world.

To join, follow and get all the updates about our WEBINARS, directly to your e-mail, subscribe @sustain-earth.com. We have also created YouTube channel to support our activities, subscribe and join us.

Highly Recommended 💯 – Public Health Risks, The COVID-19 Can Spread by AC and Building Ventilation

Though the expectation of vaccine is around the corner, we still need to wait for at least few months. Meanwhile COVID-19 will not go away by itself and it will still be with us for sometime.

It is commonly known that COVID-19 can spread through aerosol droplets for quite some distant, get attached and accumulated on surfaces for time periods that allow them to circulation in buildings by ventilation and air-conditioning systems. Though there are risks and indications that AC and ventilation systems can cause spreading of COVID-19 there are still limited, systematic detailed and comprehensive studies on the exact effects of humidity, temperature and the technical specification of filters in large central ventilation and AC system. Through the so-called ‘Memory Effects’, e.g. in Offices, Towers, Restaurants, Hotels and similar Complex Buildings. In theory, it is enough that few infected persons can cause spreading of COVID-19 in the whole building if control, considerations and precautions are not well in place. Though out-door air can be used to some extent to mitigate this problem there are still several limitations. So, degraded indoors air-quality can in itself cause serious public health issues as we still don’t have enough knowledge. Even being tested negative isn’t enough to be safe in air-flights (https://www.google.se/amp/s/www.cnbc.com/amp/2020/10/14/travel-and-coronavirus-do-pre-flight-covid-19-tests-work.html).

We are facing the threats of a second wave that may very well be much aggressive and we need to be very careful about indoors air-quality. Air-quality is definitely a serious matter that requires good sanitation in air and also how to deal with it needs to call our attention.

Few observations, literature and research articles on this matters are given here.

https://www.google.se/amp/s/nationalpost.com/health/covid-19-likely-spread-by-building-ventilation-say-canadian-researchers-working-on-an-hvac-fix/wcm/fda18c51-8cce-4640-8855-52cec5b0410f/amp/

https://nationalpost.com/health/covid-19-likely-spread-by-building-ventilation-say-canadian-researchers-working-on-an-hvac-fix

https://www.urbaneer.com/blog/can_i_catch_covid_19_from_heating_ventilation_air_conditioning_systems

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182754/

https://www.nytimes.com/wirecutter/blog/air-conditioning-coronavirus/

https://www.businessinsider.com/turning-off-ac-could-limit-chance-of-infection-experts-say-2020-4

Is Urbanization Done Right – COVID-19 and Greening of Cities

In the past decades we have observed an accelerating urbanization around the world where many old cities expanded enormously. Leaving little spaces for the citizens to move freely, to breath fresh-air, to exercise in natural environments and even be exposed to the sun. In many cities there are no affordable and easy access to parks, forests and green areas. Even more serious new cities in many parts of the world are built intentionally with increasing densification where living areas are designed to meet the needs of working adults, transport systems and cars as if recreation and children don’t exist.

All of us have definitely experienced the considerable degradation in the life-quality of our modern cities. They became parts of complex industrial production sites and we became part of complex machinery systems. Even with the invent and use of ICT we still over crowded in small areas, i.e. to be as productive as possible. In the early days of the ICT is was believed that people can be more flexible and resilient and not always forced to be in working places. However, business-as-usual became part of our life-style as if ICT doesn’t exist.

COVID-19 has drawn our attention to how urbanization and modern life-style brought with several negative impacts to life-quality. In many cities and urban areas around the world it is even hard to apply ‘physical distancing’ as there are no spaces to do so. Also, ‘stay at home’ isn’t a suitable practice as household may have many persons living in the same appartements and houses. Public transport systems, schools and public services can still be very crowded. Even the use of masks are not standard in many places or even not recommended or recognized as being a safe option. One can ask what options are left other than transmitting infections.

A city is more than its buildings and more than just housing. Modern densification is often about constructing as much housing as possible, as quickly as possible. Of course, considerations are great for housing but in the rush to build quickly it is important to slow down and ask ourselves: What kind of environments and life-style are we creating? Why and for whom are we building? How can we create cities and living environments that are sustainable, resilient and comfortable for everyone? Are our urban spaces contributing in a good built environment for pleasant life?

The Swedish National Board of Housing, Building and Planning has produced a
document in response to public debate on the densification of cities and communities, and to provide inspiration and guidance regarding ways to supplement the existing environment. Densification is not only about housing, it is about good built environment and life-quality for the people who live, work and spend time in the city. This publication gives views and arguments concerning some of the challenges and opportunities of densification. It also has interviews conducted with a few people about how they approach the challenges that exist. For example: how people’s needs for sunlight and daylight can be satisfied, how disturbing sounds in a dense city can be handled, how vegetation can be used as a resource, how room for public services can be created, and how a densification strategy for the entire city might be developed. It highlights a number of examples of municipal densification projects, all of which have added value over and above new housing. Mirja Ranesköld, planning architect, was the project leader and Elin Normann Bjarsell, landscape architect, was a member of the project team. Other coworkers contributed with their views and suggestions during the course of the project. The interviews were conducted by Elisabeth Klingberg at PratMinus (https://www.boverket.se/globalassets/publikationer/dokument/2017/urban-density-done-right.pdf).

Here some example of successful planning in the city of Gothenburg, Sweden, where I spent marvelous time in its ’Slottsskogens’ (https://www.goteborg.com/en/slottsskogen/) with an animal park, one of the oldest in Sweden. Just to demonstrate the old good times.

2020 – 24 Hours of Daily Reality Taking Place on Earth and Countdown to Uncertain Future

Interesting and scary reading that describes the daily reality around the world as experienced during 2020. What is going on planet Earth and the impacts of our irresponsible use of the global natural resources, in particular energy resources (by industry, transport, building and others), is based on scientific data and statistics specially what regards the atmospheric pollution. Among such impacts is the accelerating increase in the earth’s surface temperature (1880-2019).

What is happening in the atmosphere is triggering a global ‘Domino Effect’ with severe impacts on all other key spheres on Planet Earth. In particular the hydrosphere, the biosphere and ecosphere with tectonic threats on our living landscape (both rural and urban) and on daily basis. Global warming is also a medical emergency in times where COVID-19 pandemic makes the life more severe for many of us. The can be. connections between global warming and the COVID-19 pandemic. What is more serious is the scientific and technological advances, for many reasons, would not protect us against the consequences of global warming and will not bring back the decline in natural resources including loss of biodiversity. What is done is done and can’t be redone. As an example the CRISPR/Cas9 genetic scissor is unlikely to solve diseases caused by air and water pollution, also the mitigate the loss in biodiversity and tackle degradation in life-quality of atmosphere, bio and eco-sphere.

https://drive.google.com/file/d/1Gus8YH7ROjn-twSwt7K_Yxk6MuCNquII/view?usp=drivesdk

Sir David Attenborough and BBC for the Nobel Prize in Peace

The Nobel Prize for Peace (https://www.nobelprize.org/prizes/lists/all-nobel-peace-prizes/) has been awarded 100 times to 134 Nobel Laureates between 1901 and 2019, 107 individuals and 27 organizations. Among the International organizaions: Red Cross that got the Prize three times (in 1917, 1944 and 1963), the United Nations High Commissioner for Refugees got it two times (in 1954 and 1981), the Intergovernmental Panel on Climate Change (IPCC) and Albert Arnold (Al) Gore Jr. (2007), International Atomic Energy Agency (IAEA) and Mohamed ElBatadei (2005). These are some examples, in the same manner, we can argue that BBC and Sir David Attenborough would also be excellent candidates that deserve the Nobel Prize for Peace.

The world was just waiting for this incredible event of Sir David Attenborough to join the Instagram. It is just to use Instagram as amplifier for lifting-up biodiversity as an important part of ‘Life on Our Planet’. In just few days his Intagram Account went viral (https://instagram.com/davidattenborough?igshid=11ay0osmkukkp) with millions of followers and more to come. It is as he has an important message to us. The power of social media can hardly be ignored anymore even by highly educated professionals and politicians. What is more important is the content of social media channels that keep improving as more and more are becoming dependent on them and critical voices continue to add new dimensions as ‘survival of the fit’ is becoming an evolution and the norm for progress on the Internet. With the rise of the Internet (https://en.m.wikipedia.org/wiki/Internet) and the boom 🤯 of social media (https://en.m.wikipedia.org/wiki/Social_media) it is crucial to underline that quality of the content is being recognised more and more by the users. For a great portion of us, that can’t afford regular schooling and/or the expensive higher education, the social media channels are becoming an important source, if not the only source, of knowledge. Classical, conventional and international broadcasting channels (https://en.m.wikipedia.org/wiki/International_broadcasting) aren’t the only standard source of information and knowledge for many of us as they used to be. Though these trends, the global education systems, including higher education, are still closed systems as they don’t necessarily serve, i.e. the needs, the majority of the world population but rather an elite minority, as in football and other sports. Education, knowledge and knowledge transfer are imperative also as tools for public awareness, to share the responsibility, and not necessarily as a passport to the labor market that still support growth/linear economy. Universities and higher education institutes still lack efficient tools to reach out to the normal citizens, mediate knowledge and come near the society through tight engagement and active interactions. This is also the case for public education funded by taxes. Though the extreme importance of education institutes, in particular higher education, they still use ‘business-as-usual’ strategies without enough outreach policies to mediate and advocate knowledge to the public for protection and preservation of our common natural resources. This is the third duty of the universities and not only to perform pure ‘Research and Education’ that still can’t cope to solve existential problems as climate and environment changes, and the collapse in biodiversity, also to offer the necessary services to the citizens in major health disasters and pandemics as COVID-19. This is partly because universities and higher education continue to fail in creating partnership for goals neither with the citizens nor with the politicians as these are also part of their responsibilities, i.e. not to be isolated from the society and live on their own.

Sir David Attenborough and BBC achieved what the world universities failed to do, i.e. communicate science and technology in pedagogic and simple way, to inspire and motivate people, specially the young ones. To raise biodiversity as equally important, as climate change what regards our survival on planet Earth, is without hesitation an outcome of the work of Sir David Attenborough and through the systematic and continuous support of BBC (https://www.google.se/search?q=david+attenborough+nobel+prize&ie=UTF-8&oe=UTF-8&hl=sv-se&client=safari). This is why they are very well placed to be nominated for the Nobel Prize.

Recent Addition: Professor Torbjörn Ebenhard on the Editorial Board, Swedish University of Agricultural Sciences, Uppsala.

We are greatly honoured to have Professor Torbjörn Ebenhard on the Editorial Board of sustain-earth.com. Professor Torbjörn Ebenhard is the Deputy director of the Swedish Biodiversity Centre, Swedish University of Agricultural Sciences

Professor Ebenhard is a biologist with a B. Sc. degree from Uppsala University and a Ph. D. degree in zoological ecology from the same university. His early research was focused on island biogeography and conservation biology. Presently he is employed by the Swedish University of Agricultural Sciences, and based at its Swedish Biodiversity Centre (CBM). It is a special unit for research and communication on conservation, restoration and sustainable use of biodiversity as a crucial issue for society, especially as related to Sweden’s implementation of the UN Convention on Biological Diversity. Its mission is to initiate, conduct and coordinate policy-relevant research on the complex interactions between biodiversity and social development, and contribute to society’s capacity to manage these interactions in a sustainable way.

Apart from administrative tasks of Professor Ebenhard at CBM, he works on a number of assignments from the Swedish Environmental Protection Agency, supporting their activities on biological diversity in Sweden, and in international negotiations. Professor Ebenhard is mainly involved in the negotiations of the Convention on Biological Diversity (CBD) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), as a member of the Swedish national delegations. He is also member of the Scientific Council on Biological Diversity and Ecosystem Services at the SEPA, and serves on the board of WWF Sweden.

As explained by Professor Ebenhard “The recent Global Assessment Report on Biodiversity and Ecosystem Services produced by IPBES shows that the present and projected global loss of biodiversity jeopardizes our possibilities to reach the UN Sustainable Development Goals. Humanity is ultimately dependent on biodiversity for its wellbeing and survival. The food we eat, the clean water we drink, the clean air we breathe, fibres for clothing, wood for building homes, and bioenergy to replace fossil fuels – all is provided by biological diversity. But more is at stake. As we deplete the resources that could support us, we also annihilate living organisms and degrade natural ecosystems. According to the IPBES report at least 1 million species of animals and plants are now threatened with extinction. However, the IPBES report also gives hope, as it states that we can bend the curve of biodiversity loss, if we are determined to do so. What it takes is nothing less than a transformative change of the entire human society.”

Professor Ebenhard also reminds us that “Ten years ago the Convention on Biological Diversity (CBD), to which almost all countries are party, decided on a strategy and a set of global goals to conserve and sustainably use biodiversity, the so-called Aichi targets. They represent a high level of ambition, a much needed component of the transformative change IPBES envisages. CBD’s report Global Biodiversity Outlook 5, issued in September 2020, shows that none of the 20 Aichi targets will be met in full. This disappointing result, at a time when all targets should have been met, is due to a widespread inability by governments to implement the CBD strategy at the national level. Goals and targets at the national level have generally been set at a too low level of ambition, and national measures to reach these goals and targets have been insufficient. We do know, however, that when governments, as well as companies and individuals, have taken appropriate action, it does work, as shown by many successful cases of conservation and sustainable use around the world. But they are too few to bend the negative curve at global level.”

According to Professor Ebenhard “We now suffer the ravages of the covid-19 pandemic to our health and economy, while the growing climate crisis promises to make things much worse, but the looming biodiversity crisis will be of a completely different magnitude. The challenge now is to find integrated solutions, where the entire human society is involved in handling pandemics (there will be more than the present one), climate change and biodiversity loss. For this to happen we need people and decision makers to be aware of the nature of these crises, involve all stakeholders, set new ambitious strategies and goals for biodiversity and ecosystem services, strengthen national implementation and global cooperation, and work in a truly integrated way to address biodiversity loss, climate change and human wellbeing.”

Links: 

Swedish Biodiversity Centre: https://www.slu.se/en/Collaborative-Centres-and-Projects/swedish-biodiversity-centre1/

Convention on Biological Diversity: https://www.cbd.int/, and its report Global Biodiversity Outlook: https://www.cbd.int/gbo5

IPBES: https://ipbes.net/, and its Global Assessment Report on Biodiversity and Ecosystem Services: https://ipbes.net/global-assessment

Read more about the global biodiversity in the 2020 report (in English by the World Wildlife Fund ’WWF’, leading organization in wildlife conservation and endangered species (https://f.hubspotusercontent20.net/hubfs/4783129/LPR/PDFs/ENGLISH-FULL.pdf). Alternatively, hear the views of Swedish experts (in Swedish) on the state of biodiversity by 2020 where Professor Torbjörn Ebenhard is also contributing in (https://youtu.be/kf-bvla6GrU).

Torbjörn Ebenhard

New Addition – Editorial: Professor Anders Wörman. ‘KTH’ Royal Institute of Technology, Stockholm.

Professor Anders Wörman is the Head of division for Resources, Energy and Infrastructure, The Royal Institute of Technology, Stockholm (https://www.kth.se/profile/worman).

His research interest spans over wide-range of trans-disciplinary and trans-sectorial areas in engineering sciences and technology within water resources, hydrology and environmental hydraulics. Ongoing research are due to water and energy availability in terrestrial hydrology, effects of climate fluctuations and landscape changes on runoff, hydropower regulation, extreme flows in rivers and safety of embankment dams. His skill and expertise include: environmental impact assessment; water quality; water resources management; engineering, applied and computational mathematics; hydrological modeling; rivers; civil engineering, hydrologic and water resource modelling and simulation; water balance; waterfall runoff modelling; aquatic eco-systems; surface water geo-statistics; contaminant transport; groundwater penetration; radar and climate change impacts.

Professor Wörman was co-founder and the first manager of the undergraduate educational programme for Environmental and Aquatic Engineering at Uppsala Univ. before being chair prof. at KTH. KTH has dedicated research programmes in Applied Sustainability. One of such programmes is oriented towards finding customized solutions to develope sustainable and resilient technical applications that are climatically and environmentally suited for Africa (https://www.kth.se/en/om/internationellt/projekt/kth-in-africa/africa-1.619441). It is interesting to mention that the world longest river, the Nile, spans over large catchment areas that are located in different climatic/weather (spatio-temporal variability in temperature and precipitation) zones (http://atlas.nilebasin.org/treatise/nile-basin-climate-zones/). These special features of the Nile call for technologies that can cope with climate-environment changes of both natural and man-made origins. Combination of natural and man-made climate changes will certainly induce severe constraints and limitations on what, why and how ‘Water, Energy and Natural Resources (fossil and mineral deposits, eco-systems and biodiversity)’ Nexus need to be carefully accessed on long-term and large-scale bases. In this context, Prof. Wörman has trans-disciplinary and trans-sectorial knowledge suited to handle the complex, inextricable and multi-layered interactions within and between Water, Energy and Natural Resource Systems. These interactions are imperative to understand of coherent and resilient coupling with the Socio-Economic-Environment ‘SEE’ aspects in communities living in river-catchment systems in Africa. These issues are of special interest as river-systems are the dominant landscape units with huge importance for preservation and protection of renewable and fossil resources.

Editorial: What is Digital Water? Professor Bengt Carlsson, IT and System Control, Uppsala University explains.

We are delighted to have Professor Bengt, Carlsson at Department of Information Technology, Division of Systems and Control, Uppsala Univesity, on the Editorial Board of sustain-earth.com. As Prof. Bengt Carlsson put it in his words “Treating wastewater is great, but making the treatment resource-efficient is even greater”. Among the expertise of Professor Bengt Carlsson: energy efficiency; automatic control system identification; sustainable development; and wastewater engineering.

Sweden has been been a pioneer in water quality and water cleaning both what regards natural and urban waters. However, the digitalisation is now part of production, use and consumption of water worldwide as the pressure on water resources increased enormously and still accelerate. Here, we give an example on The UK Digital Water Utility Experience (https://youtu.be/V8DEAy3o0S8).

What are the greatest challenges for water and wastewater treatment today?
Some of the greatest challenges for water and wastewater treatment today is the contributions of pharmaceuticals that has increased pollution loads on environment. One challenge, is therefore, to effectively separate such residues in treatment plants and another is to cope with achieving climate-neutral wastewater treatment plants.

This post will be further updated and revised very soon.

Editorial: Dr. Mikael Höök, Expert on Global Energy Systems and Natural Resources, Uppsala University

An international Editorial Board in under construction to empower sustain-earth.com and to scale-up and scale-out Science, Technology and Innovation ‘STI’ for promoting and implementing the UN-SDGs, i.e. Socio-Economic-Environment ‘SEE’ aspects of human life on planet Earth.

It is a great honor to have Dr. Mikael Höök, Associate Professor, Department of Earth Sciences at Uppsala University (https://katalog.uu.se/profile/?id=N5-943) to join the Editorial Board of sustain-earth.com. Being pioneer in global energy systems, Dr. Höök leads the research group ’Global Energy Systems’, Natural Resources and Sustainable Development Programme. He has interests in popularization of science and research in energy systems, and bridging them to socio-economic-environment policy-making.

He has a PhD with specialization in global energy resources. His research deals with availability and production of fossil fuels with focus on oil and coal, but also supply of other natural resouces such as lithium and other raw materials for clean/green energy technologies. His research interests include also quantitative modelling of energy systems, fossil fuel production, field-by-field analysis, and long-term supply of natural resources. He is also very interested in wider issues like energy systems developments, resource depletion, energy security, climate impacts and sustainability. Currently, he leads several research projects focused on global oil supply outlooks and resource supply for energy transitions. He also teaches courses focusing on energy systems, energy security analysis, natural resources and sustainability. He is a lifetime member of International Association of Mathematical Geology and Geosciences (IAMG) and HP Lovecraft Historical Society (HPLHS).

Follow some interesting topics on global energy issues addressed by Dr. Höök in the ’Evolution Show Podcast’ by Johan Landgren (producer and host). The Global Energy Trends, Part II (https://youtu.be/DdmVr4rTUGw): Strait of Hormuz and Iran’s role in the energy market will follow Part I on Global Energy Trends (https://youtu.be/DdmVr4rTUGw) dealing with Oil Addiction and US shale boom; how would we be able to build a sustainable future without fossil fuels?

Nanotechnology inventions of the Ancient Civilisations

Historical texts from Spain, Italy, the Middle East and Egypt revealed how lustreware, pottery, batteries, steel swords and hair-dyeing were using nano-composites generating metal-glass and metal coatings on surfaces in different ways to produce impressive products of exceptional quality with enhanced material’s properties (https://www.theguardian.com/nanotechnology-world/nanotechnology-is-ancient-history). Damascus steel swords from the Middle East were made between AD300 and AD1700 with impressive strength, shatter resistance and exceptionally sharp cutting edge. The blades contained oriented nanoscale wire-and-tube-like structures with exceptional qualities. Pottery across the Renaissance Mediterranean was often decorated with an iridescent metallic glaze of colour and sheen down to nanoparticles of copper or silver.
Ancient Egyptian hair-dyeing, dating to the Graeco-Roman period, was shown to contain lead-sulphide nanocrystals of 5 nanometre diameter (https://neurophilosophy.wordpress.com/2006/09/06/the-ancient-egyptians-used-nanocosmetics/).

Though craftsmen were highly skilled to produce such materials that by modern definitions falls under nanotechnology they didn’t not know that they were working on the nanoscale. Such amazing inventions from ancient times dated back to thousands of years are numerous examples of ancient technology that leave us awe-struck at the knowledge and wisdom by the people of our past. They were the result of incredible advances in engineering and innovation as new, powerful civilizations emerged and came to dominate the ancient world. Many of such ancient inventions were forgotten, lost to the pages of history, only to be re-invented millennia later. Among the best examples of ancient technology and inventions are: 2000-years-old metal coatings superior to today’s standard; 2000-years-old Bagdad battery; 1600-year-old Roman artisans of impregnated glass with particles of silver and gold; the Assyrian Nimrud lend of the oldest telescope; the steam engine by the Hero of Alexandria and many more (https://www.ancient-origins.net/ancient-technology/ten-amazing-inventions-ancient-times-001539).

(In https://www.ancient-origins.net/news-science-space-ancient-technology/roman-nanotechnology-inspires-holograms-102783)

Prosperity – Africa in the 21st Century

In a series of posts we will explore why the 21st century will be prosperous for Africa. Indeed, there are various reasons to predict why Africa will continue to shine more and more though the threats that climate change, including global warming, will hit Africa more than other continents (https://en.m.wikipedia.org/wiki/Climate_change_in_Africa). Naturally there are other threats that so far hindered Africa from faster developments as compared to the rest of the world, specially that the history of Africa is very much different. Here is a list of key factors, among others, about the ongoing tectonic changes and drivers that will bring a lot of positive socio-economic impacts in Africa.

– African identity, slavery and colonialism distorted her identity and disoriented her values. However, Africa was not the only continent that suffered colonization. The concept of African identity has changed are still changing relatively fast specially with the growing restrictions in migration.

– African independence, decolonization and transition to independence characterized the past century and national identities in many parts of Africa are gradually emerging.

– Large-scale infra-structures, there are mega projects taking place in Africa (the case of Egypt participation in partnership for goals, Goal 17 of UN-SDGs) such as developing its transport systems to connect the continent from the very north in e.g. Egypt to its very south, South Africa, also from the west to the east (https://www.egypttoday.com/Article/1/77914/Egypt-launches-32-projects-in-Africa-in-1-year-report). One example is the enormous use of smart phones technology in trade, business and finance.

– Coupling rural to urban regions, this among key and important issues in the development of Africa as 70% of African are living in rural Africa and producing 70-80% of agricultural outputs.,

– African Union, AU is a continental body of the 55 member states that make up the African Continent. It was officially launched in 2002 as a successor to the Organisation of African Unity (OAU, 1963-1999).

– Human resources, population growth and youth, towards 2100 the population of Africa will peak to about 40% of the world population with very high percentage of youth.

– Natural resources Africa is abundant with natural resources including diamonds. gold, oil, natural gas, uranium, copper, platinum, cobalt, iron, bauxite and cocoa beans. This is of course in addition to its amazing biodiversity.

– Generation shift, new generations and leaders are currently shaping and reshaping Africa, combating corruption, enhance good governance and transparency and taking advantage of modern technologies, e.g. ICT, IOT, crowdfunding, protection of natural resources, also in the energy, agriculture, farming, tourism and other sectors.

– Security, many African countries are becoming more aware about the improvement of national integrity and internal security and safety of population specially that Africa has a complex diversity of ethnic groups. Remarkable developments in safety in Africa took place and still the focus of the African countries.

– Biggest market in the world, the needs of Africa will make it one of the biggest market in the 21st century. There is diversification and expansion the economy and trade both internally and with the rest of the world including Europe and Asia. This will generate tectonic changes in international trade, business, transport and mobility in labor and services.

– Global investments. Based on data through 2017, France is the largest investor in Africa, although its stock of investment has remained largely unchanged since 2013, followed by the Netherlands, the United States, the United Kingdom and China. Geographically Europe and Asia can be linked through North Africa and the GCC countries.

– UN-SDGs the world has created a global agenda for promoting and implementing sustainability which Africa will benefit considerably from it. UN-SDGs and involved targets for developments are key issues that are shaping policies and strategies to cope with poverty, hunger, gender, inequalities, education quality, health, water and sanitation, energy, strong institutions, life quality, biodiversity, ……. etc.

THE DESIRE TO TEACH their children about computers drew these Samburu women to a classroom in a settlement north of Nairobi. They are learning about tablets—designed to withstand tough use—that connect to the Internet through a satellite and come preloaded with educational programs. Technology now has arrived in isolated regions of Africa primarily in the form of relatively inexpensive cell phones. From National Geographic https://www.nationalgeographic.com/magazine/2017/12/africa-technology-revolution/

Full Documentary of the Nile’s Social Life by Joanna Lumley

Though many journeys and expeditions were done to discover the secrets of the Nile, very few of them, if any at all, touched upon the diversity of life, traditions and cultures of the Nile people. The Nile people have deep rooted love and worship for the Nile and its waters for thousand of years. The Nile and its waters meant, still mean and will continue to do so for generations. The life of the Nile people is as complex as evolution and history of the Nile itself. In this context, the socio-economic performance of the people of the Nile is very central and crucial for finding sustainable and peaceful ways to share such magnificent gift of nature. These indeed, are parts of wicked conflicts of how to put such enormous diversity in political agreements for lasting harmony in the Nile Basin as a whole. This is also the case of the rest of Africa as rivers and their catchments are basic landscape units of existential importance for the livelihood of the African population. However, vast regions of Africa don’t enjoy surface water resource or rain and other alternatives are imperative such as groundwater, desalination and water reuse. In most cases we need to think in 3D-solutions that couple surface water with groundwater and also to understand the long-term consequences of water production, use and consumption on the landscape level on longterm and large-scale levels. This can be simple to say if such resources were infinite, however water scarcity in Africa is the highest in the world yet major threats are emerging due to climate change, growing population, increasing diversification in economy, acceleration of urbanisation and industrial activities with all consequences of growing waste and pollution. The search for how such transboundary solutions of the water resources to be shared is a major political issue. All of this come in the time of today’s very rapid and fast growing ’diversification’ of the socio-economic-environment conditions needed for the ongoing transformation to sustainable societies.

Joanna Lumley’s journey, in search for the very source of the Nile, by being the longest river in the world, comes with very interesting introduction on the cultural diversity of the life and livelihood of the population in the Nile Basin. Among the amazing issues is the longstanding socio-economic diversity that shaped the life in the Nile Basin for thousands of years ranging from e.g. evolution of tourism; preparation for marriage; social gathering and social therapy ‘Soffi’; beauty treatment ‘Dukhan دخان’ (form of SPA) of body, skin and smell; sports in rural areas; local food and drinks; coutry-side work and services. Traveling, for example, comes with major challenges because of the unique landscape in the African canyons, river-catchment and forests. Respect and appreciation of cultures is the secret of not only social success but more importantly to bring about harmony and resilience in the complex social mosaic that requires modern understanding of ‘what, how and why’ issues in modern sustainability.

Just to give few examples is how to live and travel in one of Africa’s largest canyons of the Blue Nile, 250 miles long. Also, how to manage the 60 rivers that drain rainwater to Lake Tana in Ethiopia. The country with 4/5 of the african mountains and Africa’s oldest cultures that is most diverse with great influences from ancient Egypt and Arabia.

One of the great future challenge of the 21st century is how to deal with the growing scarcity of Africa’s white gold ‘water’ (https://en.m.wikipedia.org/wiki/Water_scarcity_in_Africa As of 2006). One third of all African nations suffers from clean water scarcity and Sub-Saharan Africa has the largest number of water-stressed countries of any other place on the planet. It is estimated that by 2030 that 75 million to 250 million people in Africa will be living in areas of high water stress, which will likely displace anywhere between 24 million and 700 million people as conditions become increasingly unlivable.

HR-Group for UN-SDGs in Africa – Prof. Amidu O. Mustapha.

Sustain-Earth.Com will work on mobilizing Human Resources in Africa for empowering the youth and students for scaling up Science, Technology and Innovation ‘STI’ to promote the UN-SDGs. We are delighted to have Professor Amidu Olalekan Mustapha from University of Agriculture, Abeokuta, Nigeria to work on these issues.

Furthermore, the necessary instruments and tools will be developed and implemented for active engagement of the higher education, universities and research institutions in Africa to couple ‘STI’ to society, population and market needs. University graduates, early-stage researchers and professionals (according to scientific and technical merits) through dedicated mentoring programmes will act as catalysts in creating the necessary multi-layered links with relevant stakeholders in all sectors and on all levels. The diverse, rich and wide-range of higher education and research programmes in Africa will provide the necessary Human Resources ‘HR’. This will involve raising the public awareness among the involved stakeholders. A data-base will be created to define, collect and compile the expertise, professional and the targeted stakeholders.

The involvement of high-level interactions with sectors and organisations as was the case in previous trans-disciplinary and trans-sectorial activities, e.g. IRPA-Nairobi Conference in 2010 (http://www.iur-uir.org/en/archives/conferences/id-44-afrirpa2010-third-african-irpa-regional-congress) will be assessed. This will be part of building on previous experiences and successes of already existing networking infra-structures. However, this will still require major challenges but suitable grounds will be found for what and how to do. According to Professor Amidu Mustapha there are a number of existing initiatives and platforms that we can link up with, e.g. both in Nigeria and Kenya. The members of the existing groups may also have other goals in addition, but we can benefit mutually in the common areas of environmental sustainability and knowledge development especially among youths.

A starting point will also involve reshaping and tuning two previously given courses at Uppsala university in 2018 and 2019 (http://teknat.uu.se/digitalAssets/395/c_395062-l_3-k_sustainability-in-science-and-technology.pdf; http://www.teknat.uu.se/digitalAssets/395/c_395062-l_1-k_sustainability-in-science-and-technology-2019.pdf). In these two course water, energy and natural resources nexus were detailed in order to explore what, why and how these drivers can be coupled to socio-economic-environment aspects that are necessary to help the ongoing transformation to sustainable societies. Over twenty professors and professionals were involved in conducting these courses, however there are still enormous needs to develop and extend these courses to meet the realities in many developing countries specially in Africa. This is also while considering the practical approaches that would be required in the implementation process. Particularly what regards the existing and emerging needs (UN-SDGs) in Africa for practical and appropriate policies and strategies.

Africa’s Future Gold Mine – Renewable Energy Future Opportunities and Needs

Africa has enormous untapped resources of renewable energy resources such as solar, wind, geothermal, bio-energy and hydro-power (https://www.renewablesinafrica.com).

Africa has the highest incidence of food insecurity and poverty and the highest rates of population growth. Yet Africa also has the most arable land, the lowest crop yields, and by far the most plentiful land resources relative to energy demand. It is thus of interest to examine the potential of expanded modern production of renewable in Africa. Renewables in Africa are future strong enablers and drivers for sustainable developments with enormous socio-economic-environment benefits. Renewables in Africa will help to achieve its vision for Green Growth (https://www.greengrowthknowledge.org/sites/default/files/downloads/resource/African%20Development%20Report%202012_4.pdf). In Brazil, for example, bioenergy development have been synergistic rather than antagonistic. Realizing similar success in African countries will require clear vision, good governance, and adaptation of technologies, knowledge, and business models to myriad local circumstances. Strategies for integrated production of food crops, livestock, and renewables, e.g. bioenergy are potentially attractive and offer an alternative to an agricultural model featuring specialized land use (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337098/). If done thoughtfully, there is considerable evidence that food security and economic development in Africa can be addressed more effectively with modern bioenergy than without it. However, what regards bioenergy which is so far a major resource of energy in Africa, researchers warn about its negative climate impacts and a brake on bioenergy by 2050 is suggested. This will alleviate the extreme pressures on land in the coming 30 years and avoid the negative impacts from high carbon footprint and excessive land use biomass production from crops, trees or grasses for fuel through 2100 (https://www.google.se/amp/s/phys.org/news/2019-12-bioenergy-negative-climate-impacts.amp).

Here we illustrate an excellent example of renewables from one of the African pioneers in Geothermal power generation in East Africa and the Rift Valley (https://geology.com/articles/east-africa-rift.shtml). The geology, evolution and landscape of the Rift Valley (https://geology.com/articles/east-africa-rift.shtml) in Africa makes it a unique resource and an example of the untapped renewable energy resources. Working opportunities in the energy market in Africa would open huge employment possibilities for technical engineers, including ICT.

DM and CEO of KenGen Rebecca Miano, Kenya, gives us a glimpse on the future of Renewables in Africa (https://m.youtube.com/watch?v=XOreOpeqQ4o&feature=youtu.be). KenGen as a global pioneer in geothermal energy in Africa and the world, it has access also to affordable inhouse expertise to meet crises such as COVID-19. However, demand in energy for expansion and modernization of power plants are enormous and would need more and more technical skills.

Africa’s Sustainability – Hydro-Power and Energy-Water-Food Nexus

Why do we need Energy? Why do we need Water? Why do we need Food? and How these three basic needs are related to the Earth’s Natural Capital Resources. For Africa where its population will peak to reach about 40% of the world population by the end of this century including housing the youngest population on planet Earth, it is IMPERATIVE to know how this wicked “Water-Energy-Food-Natural Resources” Nexus will be managed. With the huge and growing global pressure on Africa’s mineral/natural resources and with the other given needs in mind, how can we define Africa’s Livelihood on the bases of achieving the UN-SDGs?

The new dams in Africa have the potential to meet increased energy (electricity) demands. At the same time, there are strong coupling between climate and the “water, energy and food” in Africa. Also strong links with the global needs for Africa’s natural resources. On the large-scale and long-terms spatio-temporal changes, locations of the planned dams could put the security of electricity supply at risk for large parts of Africa. As the majority of planned dams are located in river basins with upstream and downstream regions that rely on similar patterns of rainfall and hence be vulnerable all together to drought and dry years. Also, subject to other extreme climate and weather threats caused by major changes in rainfall pattern such as uncontrolled flooding. These vulnerabilities could lead to electricity supply being disrupted. This is why it’s important to factor climate variability and change into dam design and management, and diversify the electricity production, to avoid over reliance on hydropower.

Hydropower relies on the flow of water to drive turbines for electricity generation. It uses natural changes in elevation or artificial storage in reservoirs to take advantage of the water level difference. Drought or successive dry years can result in not having enough water to drive the generating turbines and thus cause shortage of electricity. In countries like the US and in parts of western Europe hydropower is complimented by other power sources. This means that in times of drought other sources of power can balance the shortfall. But in countries where the energy mix is or will be dominated by hydropower as in e.g. Africa specially the sub-Saharan African countries. Without alternative power sources, the impacts of climate can cause fluctuations in hydropower and thus can disrupt electricity supply. Supply might need to be turned off either to ration dwindling water resources or because demand simply can’t be met. For example, the Nile and Zambezi, where multiple dams are planned on the same river channels and lie in the same rainfall clusters. This means that dry years will affect storage in all the dams, lessen their ability to refill fully and could create a significant challenge for the supply of hydropower. There are already examples of this happening (http://theconversation.com/new-dams-in-africa-could-add-risk-to-power-supplies-down-the-line-89789). In December 2017, for example, Malawi’s state owned electricity company saw power output plummeting after a severe drought. Malawi relies almost entirely on hydropower and during the 2015–16 El Niño event, Malawi, Tanzania, Zambia and Zimbabwe all experienced electricity outages due in part to reduced rainfall. Climate risks must be built into planning, this is particularly true in many of Africa’s river basins because they are highly sensitive to changes in rainfall. The increasing importance of hydropower and the potential for increasing levels of rainfall variability under climate change, underscore the need to incorporate climate risks into infrastructure planning in Africa.

There is no question the planned increase in hydroelectricity generation in Africa presents both significant opportunities and also challenges. It will assist the economic development of the continent, as greater electrification will drive industrialisation and support the creation of more secondary and tertiary industries. All these come with several socio-economic opportunities. Also, increase in water storage capacity will assist the agro-industry, by reducing its reliance on rainfed agriculture. However, an over reliance on dams could threaten food, water and energy security during times of drought, and would present challenges to a wide-range of communities that rely on the natural flow of water in rivers. Also, the boom of industrial and household activities around centralized power-stations and artificial water reservoirs can cause local and regional degradation in air and water qualities if strict rules and regulations for emissions and/or injections of pollutants are not properly put in place. These emerging threats and challenges need to be assessed with the water-energy-food nexus and life-quality in mind. If African countries seek to harness the wide benefits that their rivers provide, they must also learn from previous mistakes, minimise and mitigate the negative effects of the ongoing dam building.

The number of challenges that Africa presents in terms of energy-water-food nexus and life-quality are significant. As such nexus has also several feedback impacts on eco-system services and bio-diversity. Furthermore, the lack of adequate management of available water resources is contributing to an existing and accelerating water crisis in the African continent. Changes in climatic patterns are also expected to have impacts on crop yields, which in combination with population growth will lead to severe additional stress on water resources that otherwise would have to be dedicated to increase agricultural productivity. Under these scenarios, future water needs from the growing African energy sector may play a key role when combined with changes in water availablity and the future increasing demands from agriculture. A proper analysis of the water requirements of the African energy sector is important for an effective future planning and management of water, energy and food resources in Africa.

This said, an important and interesting issue is the impacts of water needs for energy use and production on the natural water cycle on local and regional scales in Africa, also probably on the global scale because of evaporation from an increasing number of artificial reservoirs behind the planned hydropower dams in the arid and semi-arid regions in Africa.

At this stage we give only one example on the ongoing plans in Ethiopia for hydropower production. However, sustain-earth.com will continue in detailing the what, why and how issues in the “water-energy-food nexus” in Africa. Follow the story here (https://youtu.be/NbKoXlYUNY0).

MUST SEE – Life, People and the Mystery of Blue Nile.

Let us see first what the Blue Nile means for the people sharing it. Water carried life and has deep roots wherever it exist, these roots are so powerful that can’t be ignored in any agreement. It is not only water and energy that the Blue Nile carried with it. The mystery of the Nile and the cultural issues of Ethiopia, Sudan and Egypt is a mesmerizing documentary that MUST BE SEEN. It is the best documentary for any one who is interested in the Nile River.

The Magic of DIY – How to Make Your Own IPHONE 📱

What would Steve Jobs (https://sv.m.wikipedia.org/wiki/Steve_Jobs) says if he would have seen his life-time invention to be RECYCLED in the second-hand market in tiny small pieces, parts and components? Reverse Engineering ‘RE’ doesn’t leave any product, what-so-ever until it is copied, re-engineered and put together again and again even in its best original form. Every piece, part, component and/or even the smallest screws and contacts of any smart phone, including Iphone, or/and Ipads are now re-coded, re-sorted, put on shelfs, re-packed and sold in thousand of streets of China 🇨🇳. Also, for that matter anywhere else around the world. No wonder how curiosity, needs and motivations to survive van turn people to use their imagination to re-cycle and re-use even what we still define as SMART. It is the enormous, constant and pressing needs for reparation and maintenance of even the modern HIGH-TECK electronic devices and appliances have created new markets, series of supply chains and self-made employment around the world. High-speed production by automation in factories can be RE as needs and demand for services are huge and can save the economy of users. AI will also be copied no matter the level of intelligence and the recycling of intelligence will grow and flourish. Humans will always find ways to win over AI as the instinct of survival is an important attribute for search for better life. Intelligence is a key component for the survival of the fittest and it is why humans keeps expanding their intelligence specially with the accelerating access to knowledge and know-how through the Internet-Of-Things ‘IOT’. With the growing need and imperatives of sustainability, Recycling, Re-using and Re-creating can make our planet Great Again.

Yes we can, see here how you can build your own Iphone https://youtu.be/leFuF-zoVzA