Category: Economy & Investment

Capital (economics) is used in production of good and services. In this context a growing number of accounting systems have recognized the concept of taking into account natural and social capitals “Triple Bottom Line”, i.e. including ecosystems and social relations in the definition of capital. Control of capital is a primary mean for creating and maintaining wealth though it may depreciate in the production process (physical or manufactured capital) and consumption (natural or non-manufactured capital). Capital is an input for in the production process, and thereby homes and personal autos are regarded as durable goods rather than capital. In economic systems, investment is the accumulation of newly produced physical entities, e.g. factories, machinery, houses and goods inventories. In finance, however, investment is using money with the expectation of capital appreciation and interest earnings.

For achieving sustainable socio-economic developments the “Triple Bottom Line” is expected to create and maintain long-term and large-scale economic and financial stabilities with consideration to successful conservation of the global natural resources.

Scandinavia and The Nordic Countries – Expensive But Beautiful

What makes Scandinavia expensive and beautiful is the costs associated with safety, security and quality of life on all levels. But there are things you need to know if you are planning a long stay, e.g. in Sweden (https://sweden.se/society/20-things-to-know-before-moving-to-sweden/).

It not only about tourism and long stays in Scandinavia and the Nordic countries but in general it is how the culture, social life and economy are being entangled and intertwined with nature and the environment. What you see as a tourist, or experience during a stay, has long history of socio-economic evolution, continuity in space and time and deep involvement of generations (http://www.academia.edu/7640463/Entangled_Environments_Historians_and_Nature_in_the_Nordic_Countries). The article explores questions of definition, disciplinary knowledge and the need for interdisciplinarity, and the problem of national, spatial, and temporal boundaries in environmental history. It concludes with a look to the future of Nordic environmental history.

Zero-Carbon Tecnologies – From Divergence to Convergence of Eco-nomy and Eco-logy

The industrial revolution (http://sv.m.wikipedia.org/wiki/Industriella_revolutionen), the advance of science and technology during past centuries (http://en.m.wikipedia.org/wiki/20th_century) , and the associated accelerating “production-consumption” because of population pressures are taking us to new global tectonic shifts. The scream of nature and life on earth is forcing a new world order to bring about zero-carbon technologies for major cleanup of the atmosphere from all un-necessary emissions of carbon dioxide. Indeed, we should shape these shifts to a much more wider and inclusive cleanup from all toxic pollution and waste that are causing enormous and accelerating degradation of the atmosphere, the hydrosphere and the land. http://www.eia.gov/todayinenergy/detail.cfm?id=10

For many decades and even centuries there have been an accelerating divergence of the socio-economic twin “eco-nomy and eco-logy” with enormous feedback impacts on the functioning and metabolism of all life processes and qualities on earth. The convergence of the gap between eco-nomy and eco-logy is IMPERATIVE for achieving sustainable socio-economic developments around the world. Just some few examples from two most big economies in world the USA (http://www.eia.gov/todayinenergy/detail.cfm?id=10) and the emerging China (http://www.mining.com/china-the-worlds-biggest-energy-consumer-and-producer-72513/).

http://blogs.worldbank.org/climatechange/

We can dream to get a world which we can enjoy together in combinations of natural colors with positive impacts from worlds greatest music.

Canada – Emergence of “Toxic” Lakes Because of Tar Sands Industries

The emerging global shift from light oil to heavy oil will bring with it new chain of environmental threats in terms of increasing emissions of carbon dioxide, severe degradation of surface water and ground-water qualities as well as damage to aquatic life and bio-diversity.

The so-called Tar Sand (http://sv.m.wikipedia.org/wiki/Oljesand) has severe negative impacts on  climate, natural water quality and aquatic life if protection and conservation strategies are not properly implemented in association with mining and processing.

http://www.livescience.com/49004-environmentalists-fear-tar-sands-lake-toxicity-lobbyist-video.html

BBC Science & Environment – Soil Crisis Threatens Food Security of Future Generations

BBC for SCIENCE & ENVIRONMENT, 4 December 2014, tells that African soil crisis threatens food security because of substantial soil degradation where 65% of arable land, 30% of grazing land and 20% of forests are already damaged. This serious land degradation accounts for about a quarter of land area of sub-Saharan Africa, which is indeed a vast area. The study has been published ahead of the 2015 international year of soils.

According to Montpellier Panel, made up of agricultural, trade and ecology experts from Europe and Africa, the problem needed a higher priority by aid donors as land degradation reduced soil fertility, leading to lower crop yields and increased greenhouse gas emissions. Soil degradation was also hampering economic development, costing the continent’s farmers billions of dollars in lost income.

The Montpellier Panel said that this issue must be given ‘Global priority’ as Africa is facing a combination of severe difficulties of land degradation, poor yields and a growing population. Panel chairman Sir Prof Gordon Conway, from Imperial College London, described the issue as a “crisis of land degradation and soil management”, adding: “We have got to do something about it”. “There are about 180 million people who are living on land that is in some way or another degraded. It is really very severe.” Neglecting the health of Africa’s soil will lock the continent into a cycle of food insecurity for generations to come, a report has warned.

Other factors are likely to add further threats for accelerating soil degradation, e.g. global warming, hydro-electric power industries (http://www.internationalrivers.org/resources/big-dams-bringing-poverty-not-power-to-africa-2006) and peak phosphorus by the end of this century  (http://en.m.wikipedia.org/wiki/Peak_phosphorus).

http://www.bbc.com/news/science-environment-30277514

Globalization of Science and Technology – Accessibility and Affordability in New Cultural and Climate Context.

Living conditions on earth are highly dependent on climate and weather conditions that are primarily controlled by natural conditions on the earth and its position in the solar system. This is except the negative man-made impacts on the environment and climate that started with the expansion of world population and after the industrial revolution with observable effects on life during the past century.

So far, the major achievements of humans on earth have been dramatic. In addition to ancient civilizations, the past centuries have witnessed major global transformations that are brought about by enormous scientific and technical advances and innovation. Such developments and the associated fast urbanization, after the first and second world wars, have caused gradual marginalization, or even isolation, of some or even major populations in many regions around the world which is indeed the essence of increasing poverty, at least in relative terms. With the initial stages of the digital revolution such gaps have also increased though in the long run they would rather shrink because of increasing access to knowledge and the associated benefits from the “transfer-of-knowledge” and “exchange-of-knowledge”.

With the increasing globalization there are growing needs not only to understand and to know the life under “normal” conditions, i.e. less natural extremes in weather, but also to know more about how “normal” is “normal” under climate conditions that are drifting from the natural functioning of the earth’s system. In particular we need to widen our knowledge on the more extremes in harsh environments (http://www.therichest.com/rich-list/here-are-5-of-the-harshest-environments-on-earth/). Such understanding on the global level allows promoting and extending the applicability of science and technology. However, climate and weather conditions set severe limitations on the applications that can be based on scientific and technical advances and innovations. Remote cities (http://www.buzzfeed.com/adamdavis/the-most-remote-and-extreme-cities-around-the-world) and places at the end of the earth (Palmerston: The island at the end of the earth http://www.bbc.com/news/magazine-25430383) are few examples. Also, the living conditions of rural populations in particular “uncontacted people” or the so-called “isolated peoples or lost tribes”, i.e. who live, or have lived, either by choice or by circumstance, without significant contact with the more globalized world (http://en.m.wikipedia.org/wiki/Uncontacted_peoples). The increasing mobility and movement of people is bringing with it new needs for globalization of “cultures and traditions” rather than, and not only limited to or forced by, globalization of science and technology. Coupling science and technology to cultures and traditions is among difficult challenges in many places around the world.

In spite of the fact that our planet is undergoing a population explosion there are regions with declining populations because of increasing isolation. In the website below we will take you to places, e.g. the isolated areas of Arctic, Antarctic, canyons, deserts, Saharas, ……,  where it would be even hard to find a companion. It can even be much harder to survive in these places with the “affordable” technologies we have in populated urbanized regions. With this insight you will probably have a new appreciation for the people in your life, or you may probably prefer to stay where you are and do much better to preserve and protect your environment. Anyway enjoy these 25 most remote places in the world:

http://list25.com/the-25-most-remote-places-in-the-world/

 

LIMA CLIMATE CHANGE 2014-CONFERENCE – Political Responses & Achievements Since Discovery of Climate Change

Science is usually in advance of politics and technology and the implementation of both is usually, if not totally, associated with clear interests. Sometimes, not very often, politics and technology team up immediately whenever common and mutual interests are apparent especially with support of economic and/or power related advantages.

The history of the scientific discovery of climate change began early 19th century with various theories and arguments about possible natural and man-made drivers. In late 19th century and since 1960-1970 the warming effect of human emissions of greenhouse gases, in particular carbon dioxide, became more and more convincing. By 1990, scientific research on climate change expanded enormously with rich data explaining causal relations, links with historic and palaeo-climatic data with refined and validated numerical climate-change models. Climate change can be best described as change, significant and lasting, in statistical distribution of spatio-temporal weather pattern. Time periods of such changes can range from decades up to millions of years. The changes can be in average weather conditions or in the distribution of weather around the average.  (http://en.wikipedia.org/wiki/History_of_climate_change_science)

The enormous and accelerating pressures from the scientific community supported by huge convincing scientific data, observations and models resuled in political realization of the effects and impacts of global warming (http://en.wikipedia.org/wiki/Politics_of_global_warming). Though the evolution of the scientific discovery of climate change, unlike other scientific discoveries, took a long journey to develop still the political road map for realization of global warming, and implementation of mitigation actions, was still more complex. This is due to numerous factors that arise from the global economy’s interdependence on carbon dioxide and because it is directly implicated in global warming. Global warming is non-traditional environmental challenge as the impacts are global, relatively irreversible in terms of short-periods of time, i.e. because of the long residence-time in the atmosphere, act directly and indirectly not only on weather patterns but the global water cycle and have wide-range of impacts on the functioning and metabolisms of global ecosystems and biodiversity. Global warming is one of the most important man-made effects with considerable impacts on the sustainability of all life forms on our planet.

The UN Climate Change Conference opens today in Lima, Peru, and will continue until 12 December. The Conference includes the 20th session of the Conference of the Parties (COP 20) to the UN Framework Convention on Climate Change (UNFCCC) and the 10th session of the Conference of the Parties serving as the Meeting of the Parties to the Kyoto Protocol (CMP 10). Three subsidiary bodies will also convene: the Subsidiary Body for Implementation (SBI), the Subsidiary Body for Scientific and Technological Advice (SBSTA), and the Ad Hoc Working Group on the Durban Platform for Enhanced Action (ADP).

The document given below describes the political responses and achievements since 1992 where the first major global political engagement took place. The international political response to climate change began with the adoption of the “UN Framework Convention on Climate Change” UNFCCC in 1992, which sets out a framework for action aimed at stabilizing atmospheric concentrations of greenhouse gases (GHGs) to avoid “dangerous anthropogenic interference with the climate system.” The Lima conference will consider agenda items related, inter alia, to finance, mitigation, adaptation and technology. The COP will also hear a report from the ADP concerning progress made during the third year of its mandate to develop “a protocol, another legal instrument or an agreed outcome with legal force under the Convention applicable to all Parties” by 2015 to enter into force no later than 2020.

https://mail.google.com/mail/u/0/#inbox/14a0462ec4cdc2a7

Mining and Peak Resources – Would Celestial Skies Help Us to Survive on Earth?

Mining activities are among essential drivers for the global industry especially what regard the exploration, processing and production of raw materials necessary for technological production worldwide. For a global overview and up-to-the-date coverage check “Terrapinn – Total Mining” for information on exploration, investment, and development of miners, financiers and investors (http://blogs.terrapinn.com/total-mining/category/minerals/).

The growing fear of world industry to run out of raw materials there are intentions directed towards the moon. Professor Ouyang from the Chinese Academy of Sciences in an interview conducted by BBC News, states that China is in pursuit of natural resources up in the celestial skies as the earth’s mineral resources gradually dwindles, starting with the moon. “The Moon is full of resources – mainly rare earth elements, titanium, and uranium, which the Earth is really short of, and these resources can be used without limitation.”

If this would be the solution from where the energy resources to the outer space come from? And even if the needed energy would be available, what shall humans do with ever increasing amount of waste and pollution? Under these conditions would humans still have accessible and affordable quality of air and water for life? Few new challenge facing future generations.

http://blogs.terrapinn.com/total-mining/2014/02/28/chinas-moon-mining-pursuit/

Ebola – Key Questions and Answers on How To Protect Yourself

Information from “CDC” Centers for Disease Control and Prevention, USA regarding Ebola Virus Disease and protection of people. Check Key “Questions and Answers on Ebola” concerning: Personal protection against Ebola?; Has the “patient zero” been identified?; How do I know if I have seasonal influenza or Ebola? If I  am experiencing some flu-like symptoms (e.g. fever, headache, muscle aches).

What is “CDC” doing in the U.S. about the outbreak in West Africa?; Travelers: What is being done to prevent ill travelers in West Africa from getting on a plane? In West Africa, during travel and in the United States; What do I do if I’m returning to the U.S. from an area where the outbreak is occurring?; What do I do if I am traveling to an area where the outbreak is occurring? Should people traveling to Africa be worried about the outbreak? In the United States: Are there any other cases of people in the U.S. getting Ebola?; Is there a danger of Ebola spreading in the U.S.?; Why don’t we restrict travel to the United States?

Check with the local authorities in your counry if similar questions and answers can be applicable, e.g. elsewhere around the world.

http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/qa.html?mobile=nocontent

Technology and Innovation for Rural Sustainability

Appropriate and sustainable rural technologies are very rare as most of the global attention, driven by economical interests, is focused on urbanization. Such technologies are very poorly needed because of several reasons. They are, also, imperative for promoting successful long-term and large-scale sustainable urbanization. This is, even, essential in agricultural regions where rural communities are major parts of the national socio-economic structure, which is the case in many developing countries in particular Africa. This is at least necessary in the transition periods prior to large-scale and long-term transformation to urbanized societies where gradual, appropriate and sustainable integration of rural regions is necessary.

Urbanization has caused an accelerating drain of un-favored groups to mega and large cities (http://www.academia.edu/847075/Mexico_City._The_marginal_communities_social_and_ethnic_segregation_of_the_native_population). The random and rapid expansion of urbanized regions has promoted an ever accelerating pile-up of slum-communities in many regions around the world (http://www.schooljotter.com/showpage.php?id=158173) which indeed is not sustainable both from the economic and environmental perspective.

Some parts of the problem are associated with the negative impacts from global education, research and technology driven-policies around the world by being supported by national and international institutes and organizations including the United Nations and World Bank. Management of research, education and development programs fails to involve people from the developing countries to contribute in solving problems and difficulties in their native countries or at least to find partners from the developed countries willing to participate in solving the enormous problems and difficulties in this respect.

Fortunately, the global community started to recognize such problems and to take steps and  efforts, though limited in extent, for achieving successful socio-economic development that is very much related to reducing poverty and the associated impacts of environment and climatic threats. An innovative example “Ecological System Designs for the Indigenous Community of Maruata, Michoacan, Mexico” is given here where researchers from the developing countries are demonstrating how to bring about successful ecological designs for living better, cheaper and ecologically sustainable.

file:///Users/farid/Desktop/Indigenous%20Community%20of%20Maruata,%20Mexico%20(Design%20Example).webarchive

World Largest Power Station – How Huge is Huge in River’s Technology?

The Three Gorges Dam represents the accumulated knowledge and know-how from all previous worldwide advances in dam technology including finding solutions for a wide-range of side effects apart from the main goal of generating power. It is the world’s largest power station in terms of installed capacity (22,500 MW), a hydroelectric dam that spans the Yangtze River by the town of Sandouping, located in Yiling District, Yichang, Hubei province, China. It has several innovations and integrated solutions. Except for a ship lift, the dam project was completed and fully functional as of July 4, 2012, when the last of the main turbines in the underground plant began production. The dam has 32 main turbines, each with a capacity of 700 MW,  and two other smaller generators (50 MW each), with total electric generating capacity of the dam is 22,500 MW. The dam is intended, also, to increase the Yangtze River’s shipping capacity and reduce the potential for floods downstream by providing flood storage space. A partial solution for problems associated with the transport of nutrients because of silting behind the dam is, also, taken in consideration. Chinese government regards the project as a historic engineering, social and economic success, with the design of state-of-the-art large turbines, and a move toward limiting greenhouse gas emissions.

 

For comparison with the largest twenty dams in the world a global and historical survey is summarized  in this document: http://largest-dams.blogspot.se

Published on 31 May 2013
Largest Dams in The World

 

How Amazing is Amazing? – The Most Amazing Lakes In The World

10. Dead Sea (Bordered with Jordan, Israel and Palestine), its water is 9.6 times saltier than the ocean. No macroscopic living things can thrive in it and the high salinity makes life impossible to form with the exception of a very few bacteria and fungi. Because of the high salt concentration, the buoyancy of the water is so strong that a person cannot swim underwater and will push the body to float. The sea is also believed to have therapeutic powers to cure certain skin diseases.

9. Lake Berryessa Glory Hole, California. It is very important not only a tourist attraction but more so, it generates hydroelectricity. What makes it amazing is the bell-mouth spillway “Glory Hole” which is the largest of its kind with a diameter of 72 feet, a vertical drop of 200 feet and shrinks down to 28 feet. Once the water level reaches the maximum level, the spillway becomes submerged and it swallows excess water at unbelievable rate of 48,800 cubic feet per second.

8. Crater Lake, Oregon. It is formed during the collapse of Mount Mazama 7,700 years ago, 2,148 feet deep. It is considered the deepest in the United States and 7th or 9th deepest lake in the world. There are no rivers or any other bodies of water connected to the lake. Because of this, the water in the lake is considered one of the purest because of the absence of pollutants. The water is very clear and it has a visibility of up to 43.3 meters.

7. Lake Baikal, Siberia. Lake Baikal is a rift lake formed through continental crust being pulled apart. It is the deepest lake in the world with a depth of 1,642 meters (5,387 ft). Underneath the lake floor there is 7 kilometer of sediments placing the rift floor some 8-11 kilometers below the surface. Americans and Russian scientists studied the sediments with detailed climactic records dating as far back as 250,000 years. One of the most ancient lakes, its age is 25-30 million years.

6. Abraham Lake, Alberta, Canada. It is man-made lake in Alberta Canada. It is really beautiful during summer but what make it amazing is the frozen bubbles found underneath the lake during the winter season. These frozen bubbles are actually methane gas that is produced when bacteria at the bottom of the lake decomposes organic matter like animals, plants, and trees that died and sank to the bottom.

5. Taal Lake, Batangas, Philippines. It is a freshwater lake; it cradles the world’s smallest active decade volcano, the Taal volcano. The lake fills the Taal caldera which is a remnant and the spot where historical eruptions occurred dating back to 100,000 to 500,000 years ago. Within the Main crater lake is also a small island known as the Vulcan point. At 40 meters, Vulcan point is the world’s largest island within a lake (Main crater lake) on an island (Volcano Island) within a lake (Taal Lake) within an island (Luzon Island). It is confusing but that what makes it amazing…

4. Five Flower Lake, China. The Five-flower lake is one of the most popular and most beautiful lake among the lakes found in the Jiuzhaigou National Park in China. It is renowned worldwide and thousands of tourists visit it everyday. It lies at the end of the Peacock River at a height of 2,472 meters above sea level and has a depth of 5 meters only. This shallow lake reflects multiple colors and definitely a great sight to feast your eyes with. The bottom of the lake is littered with ancient trunks of trees crisscrossed everywhere.

3. Spotted Lake in British Columbia, Canada. The most notable feature of the lake is the multi-colored spots that are very visible and prominent even when viewed from the highway. The lake contains the world’s highest concentration of different minerals most notably, magnesium sulfate, calcium and sodium sulfates. The lake evaporates and during summer only the minerals remain and they form natural walkways in between and around the spots. It is also therapeutic and known to cure diseases. Fences preventing direct access protect the lake.

2.Lake Hillier (Pink lake) in Western Australia. It is famous for its pink color. It is really amazing in that it’s color is not derived from beta-carotene released by an algae when light penetrates the water; which is actually the case for Lake Retba in Africa and the Pink lake in Western Australia. These two lakes derive its color from the red pigment being produced by Dunaliella Salina and Halobacteria that use sunlight to create more energy. Unlike these two, the pink water of Lake Hillier is permanent even if water is taken from the lake and transferred to a different container.

1. Plitvice Lake in Croatia. It is inside the Plitvice National Park in Croatia, the largest national park in the country and the oldest in southeast Europe. It is considered the most beautiful lake worldwide because of it’s spectacular display of colors at different times of the day, at different angles of light and at different seasons. It was inscribed in the UNESCO World Heritage in 1979 among the First Sites worldwide. Every year, more than 1.2 million tourists from all over the world visit it. It is most famous for its 16 lakes arranged in cascades.

http://purpleshadow13.hubpages.com/hub/10-Most-Amazing-Lakes-in-the-World

Best Beaches, Water Quality and Wellbeing – Information, Pictures and Criteria.

Water quality is central for wellbeing of humans or at least for protection of health and preservation of quality of all forms of life. Water resources are not only an economic and industrial resource and the uses of water don’t stop for indoor household activities. Indeed, the urbanization of water as forced by economic, industrial and indoor household activities is forcing an ever-accelerating promotion of “production and consumption”. On global long-term perspective, this is posing an ever increasing degradation of the quality of natural water resources with severe negative impacts on the quality of life not only what regards inland freshwater water bodies but, also, all maritime coastal and offshore waters. Conservation and protection of the global water resources is a global long-term investment for many generations to come.

“Sustain-earth.com” will continue the describe the dimensions and threats of the ongoing urbanization of water resources where demonstrations will be given to the existing unlimited needs for taking in consideration the role of water for the wellbeing of humans in terms of health and recreation as well as conservation and protection of all forms of life on the planet.

Access and affordability of good water quality for recreation is among growing needs where the pressures and competition on water resources are enormous. Best Beaches in the world are very expessive and not easily accessible. Compact information and pictures of the world’s best beaches are given here in terms of criteria, weather, water, sand, facilities, access, visitor numbers, ….. etc : http://www.bugbog.com/beaches/best_beaches.html

We give few examples on efforts made for raising public awareness on the existing needs. The US “Guide to Finding a Clean Beach”: How to find out if a beach is tested for pollution and what authorities do if they find it; finding help online and at the local or state health departments; avoiding polluted beaches; ……. etc: “http://www.nrdc.org/water/oceans/ttw/guide.asp”. According to CNN 10% of water samples collected from U.S. beaches failed to meet the government benchmark for swimmer safety. It’s an icky thought, especially considering the popularity of several of the failing beaches included in the Natural Resources Defense Council’s “Testing the Waters”: http://edition.cnn.com/2014/06/25/travel/beaches-water-quality-report/

For the UK, find out how clean the water is on beaches, in other bathing in England and Wales, and if there is a problem with pollution: https://www.gov.uk/quality-of-local-bathing-water. For Canada, Toronto has some of the best beaches in the world, this is verified by the Blue Flag Program. This internationally recognized program awards “blue flags” is directed to communities committed to maintaining high standards for water quality: http://app.toronto.ca/tpha/beaches.html

Urbanization and Future Impacts of Water Treatment on Natural Waters

Without proper water treatment healthy life in out cities wouldn’t be possible. To further couple the importance of water treatment to other sectors in the society we need some background information. This is described at http://en.m.wikipedia.org/wiki/Water_treatment

Also, how drinking water is made and how water treatment plants function is explained in:

With this background information and with the expected prognoses that 70% of world population will be gradually moving to cities during the twenty first century it is not clear how water treatment plant would cope with the increasing waste that is generated from human consumption, i.e. household, agriculture and industry. Unlike solid waste, which is subject to sorting in some parts of the world, wasted water from urbanized areas carry an increasing number and amounts of pollutants in their end products, i.e. effluents and sludge. Though water treatment plants may be effective to provide good quality of water, wastewater treatment plants however are not as effective in removing whatever exist in wastewater. This means that the net effect of urbanization is an increasing production and injection of waste and pollution that is delivered to natural aquatic water systems. This would, of course, provide large-scale and long-term threats on ecological water, and life quality, and will have negative feedback effects on “raw” water that will be later used in water treatment plants.

In summary we have an accelerating internal urbanization of water that generates waste and pollution as end products to be injected and delivered to the main natural global water cycle.

 

 

 

 

 

 

 

 

Urbanized Water – Evolution, Threats and Feedback Impacts on Natural Water

Natural fresh water, does it exist? We used to have high quality natural waters but this was probably more than a couple of thousand of years ago, i.e. just before the Roman Empire. Natural fresh waters are very hard to find nowadays, only in remote regions far away from human impacts, e.g. frozen water in polar areas or some fossil water somewhere underground.

The Romans invented the culture of urban water systems that exist today in our cities around the world. Gravity-fed systems distribute water, from water treatment plants, around cities and ultimately dispose wastewater in underground sewer networks. From the Romans time until today urban water systems went through major transformation forced difficulties originated from: water shortages during the Romans; cholera outbreaks in the Industrial Revolution; and most recently polluted surface water systems (lakes, rivers, …… ), e.g. in Europe and the US that accelerated shortly after WWII. We are now facing more and more complex web of serious threats on natural waters due to the rapid technological and economical advances of the past century, the growing world population and an accelerating “production-consumption” wheel as a result of many emerging economies. Climate change, pile-up of pollution and waste, aging urban water systems (both water and wastewater), various types of peaks in particular energy- and water-related ones, constrains in world economy and geo-political conflicts. You name it.

In this post “Sustain-earth.com” gives some background information of the evolution of urbanized waters and problems associated with wastewater treatment. In coming posts other urbanization-related issues will be given, in particular water treatment processes and the importance of the quality of natural waters on such processes.

Here is some description of how urbane water systems developed and the situation many cities are facing today. Urban water systems are starting to break down with these problems: 1) water infrastructure needs costly upgrades; 2) many sewer systems are becoming overloaded; 3) water scarcity appearing in drought-prone areas. Some possible fixes are, also, given: Water recycling, desalination, decentralization: http://www.vox.com/2014/10/6/6900959/water-systems-pollution-drinking-water-desalination

Wastewater Treatment Plants have impacts on the water quality of natural waters and there are growing fears that they are acting as pollution factories: http://www.riles.org/musings.htm

Also additional background information on how typical wastewater treatment plants work: http://water.usgs.gov/edu/wwvisit.html see also this video: https://www.youtube.com/watch?v=OocKzAowo_0&app=desktop

Bottled Water And Tap Water – How Good is Good? How Clean Is Clean?

Quality of drinking water, and the water for household uses, is constantly and frequently showing up as daily public concern around the world and it is indeed a serious problem of increasing dimensions.

It is a historical daily pain in Africa where people spend long time searching, collecting and also transporting water long ways. It is not only a headache and troublesome issue for millions of people in Africa but a constant source of threat as water is an effective media for conveying and spreading diseases. What is much more serious is the degradation in the quality of the natural water resources. If the “raw” water in natural systems, e.g. rivers, lakes and marine coasts, and to some extent groundwater, is contaminated then how would it be possible to get access to, at least, affordable drinking water? How would it be possible to manage other household uses?

What happens, and still happening, in Africa started to be a global concern of growing importance. Water quality is a problem that is gradually and slowly emerging in many places around the world. There are increasing number of reports on the degradation of both tap water and bottled water around the globe even in the best countries in Europe (but in very much limited extent), not to mention Asia and in particular China. Some examples are given here while others were previously addressed for discussions in different Blog posts in “sustain-earth.com” and LinkedIn groups, e.g. “Africa and MENA Sciences and Technologies” as well as Facebook and Twitter.

http://africacheck.org/reports/false-claim-that-sa-one-of-only-twelve-countries-with-safe-tap-water/

http://m.thelocal.com/20130913/tap-water-less-risky-than-bottled-water-swiss-study

The impacts of increasing deterioration in natural water systems and water for household uses are, also, showing up in the public health records because of the growing threats from resistant bacteria. Anti-biotic and other pharmacological remains keep injected out in nature from wastewater treatment plants, also other known and unknown sources can be expected.

http://www.riles.org/musings.htm

http://www.theatlantic.com/health/archive/2014/10/invincible-bacteria-in-the-middle-east/381671/

 

Role of Human-Computer Interaction – From Awareness and Education to Sustainability

WWW (World Wide Web) is a system of interlinked hypertext documents, intended to provide global and effective communication systems through the Internet. Webpages can be viewed for their content of text, videos, and other multimedia where hyperlinks allow the navigation between different contents. The inventor of WWW, Tim Berners-Lee, realized in 1989 that his proposal for a more effective CERN communication system could be implemented throughout the world through hypertext “to link and access information of various kinds as a web of nodes in which the user can browse at will”. This was jointly done in 1990 with Robert Cailliau.

Douglas Engelbart already in 1968 demonstrated the invention of “human-computer interaction” where “The Mother of All Demos” retrospectively illustrated the complete computer hardware and software system of all known fundamental elements of modern personal computing. It was the first to publicly demonstrate all features, elements and capabilities of modern computers as communication and information-retrieval machines where the previous idea of Vannevar Bush for a Memex was turned into reality. Memex was visioned by Vannevar Bush, in 1945, that it could implement what is known today by hypertext with the aim to help humanity to have a collective memory and to avoid the use of scientific discoveries for destruction and war, probably an early starting point for sustainability.

Hypertext, including tables, images and other presentational content forms, is displayed on a computer display and other smart devices (mobiles, tablets, …..) with interaction to other text which the reader can immediately, or progressively at multiple levels, access via hyperlinks. An innovation of extreme importance for effectively and globally promoting communication, with high speed never known anywhere expect the speed of light, in all sectors and on all levels with tectonic changes and shifts within and between know and unknown boarders. Apart from economic, scientific and technical importance; populations around the world can easily access and afford sharing information, also for professional to produce and market products and services. Human-computer interactions are now advancing with unprecedented importance for public awareness and education on all levels especially for empowering individuals, groups and association in a wide spectra of new activities for engagement and shaping socio-economic sustainability on micro-levels, at any time and in regions and remote places that were never reached before. What we though was virtual yesterday is in fact very real today.

Since the birth of WWW an accelerating interest in human-computer interactions in all sectors of modern societies has emerged with tectonic changes in the flora of social media, public awareness and educational tools such as blogs and MOOCs “Massive Open Online Courses” focusing on Sustainability on different levels, specialities and content. Blogs and MOOCs are internet based and generally free of charge a matter of increasing importance for achieving socio-economic sustainability. They don’t have any entry requirements and are open to anyone anywhere in the world with an internet connection. MOOCs are linked to universities, may lead to certificates/diplomas and some universities give packages of MOOCs leading to degrees but this may be subject to fees.

https://www.mooc-list.com/tags/sustainability; is a general link with MOOC-list on sustainability issues with technical information, short specifications and descriptions of the courses. Some examples are given below:

https://www.coursera.org/course/susdev provides an introduction to the interdisciplinary field of sustainable development. It describes the complex interactions between the world economy and the Earth’s physical environment. Ecological processes and constraints significantly shape the patterns of economic development, demography, and wealth and poverty. At the same time, human activities change the physical environments, increasingly in dangerous ways.

http://www.universityworldnews.com/article.php?story=20140511172841978 is a free MOOC course on “The age of sustainable development” that gives students an understanding of the key challenges and pathways to sustainable development – that is, economic development that is also socially inclusive and environmentally sustainable.

https://open.sap.com/course/sbi1; Conducting business in more sustainable ways is becoming increasingly relevant today and a “must-have” in the future. The sustainability megatrend is driven by a growing population, accelerating urbanization, resource intensity, government regulation, climate change, and – most importantly – by the fact that consumers are increasingly demanding healthy, affordable, as well as socially and environmentally responsible products.

https://www.futurelearn.com/courses/sustainability-society-and-you; it provides the knowledge and skills to do this by investigating sustainability from multiple angles and exploring what small steps you can take to have a real impact upon all our future. It gives an introduction to the values and principles associated with sustainability and some of the knowledge and understanding required to make sustainable decisions in personal and professional life.

http://50plus20.org/archives/2952; is a Collaborative MOOC on Responsibility, Sustainability and Ethics for Business and Leadership. The emerging model of offering Massive Open Online Courses (MOOCs) could pose a major threat to traditional model of management education with some estimating that up to 60% of traditional teaching could be disrupted or in part replace by MOOC offerings. Early adopters of online learning platforms will however find a limited choice of material and courses focused on the broad topic of “Sustainability, Ethics and Responsibility in Business and Leadership”.

Http://sustain-earth.com will continue reporting on sustainability and emerging global trends.

 

 

 

 

AGWA Management of Water Resources – What About Pollution and Waste?

The Alliance for Global Water Adaptation founded in 2010 and involving regional and global development banks, government agencies and ministries, diverse non-governmental organizations (NGOs), and the private sector is focusing on managing water resources in a sustainable way.  Though climate change is a major driver altering the global hydrological cycle still pollution and water are other man-made drivers influencing the global quality of natural waters. Water provides coherence to climate change adaptation and mitigation, integrating energy, water, food production and agriculture, and ecosystems and the environment. At the same time, the interaction with environmental changes in terms of increasing pollution and waste has strong threats on all life forms on earth with huge impacts on the quality of food and the health of ecosystems in general. Though AGWA is focused on how to help experts, decision makers, and institutions in the water community work more effectively, however there are still needs to consider sustainability in much wider perspective especially what regards the threats and impacts of pollution and waste, arising from production and consumption, on the hydrosphere, ecosphere and biodiversity.

http://alliance4water.org/

Quality of Natural Water – Peak Water Quality and Best Tap Water

Many countries around the world suffer from increasing degradation in the quality of their natural land-water and aquatic water resources, e.g. lakes, rivers, coastal maritime and in some cases groundwater, because of growing net accumulation of pollution and waste in the environment. As explained in separate post (http://sustain-earth.com/2014/10/life-on-planet-earth-until-2100-double-e-global-collapse-in-economy-and-ecology/) the net global waste is expected to peak sometime at the end of this century.

In parallel to this there is a gradual and increasing degradation in the global quality of natural land-water and aquatic water resources with serious negative feedback impacts on the quality of all life forms on the Earth. So sometime at the turn of this century or early twenty-second century we may expect peak ecological water quality (http://pacinst.org/issues/sustainable-water-management-local-to-global/peak-water/) to materialize. This of course assuming that trends in waste production/recycling will follow the scenarios of the “Nature” paper given in the mentioned post. Also, this is assuming that the collapse of life on earth will not occur already before peak ecological water quality and the delay-effects will give some space to perform remediation and correction measures. There are observations and data in literature illustrating that the degradation in ecological water quality and the associated collapse (frequency and intensity) in ecological systems have already taken place in a growing number of geographical regions. Peak “ecological” water is defined as the point beyond which the total costs of ecological disruptions and damages exceed the total value provided by human use of that water. Unfortunately, the quality of tap water is very much related to the quality of “raw” water, i.e. the natural water of aquatic systems. We have already seen that achieving suitable tap water quality, even acceptable quality bottled water, are not any longer an easily affordable task.

Water Quality – Top 10 Countries With Best Tap Water.

A Note from “sustain-earth” on Artificial Recharge of Groundwater

Water management is an important part of landscape architecture of increasing importance in rural areas where appropriate and sustainable technologies are highly lacking due to un-coordinated and random expansion in urbanization. Rural areas especially in the developing countries are of crucial importance not only for agriculture, agro-industries and production of food but also for generation of jobs, maintaining socio-economic and cultural heritages in these regions. Integration and engagement of the rural population in water management are imperative for successful long-term and large-scale implementation of such policies.

Appropriate and sustainable management of water resources involves developing supplementary Key Performance Indicators “KPI” for monitoring and assessing the consequences of the interference of man in the environment and possible feedbacks impacts on water quality status and changes through short-term and long-term approaches. This would require net-work of sensors, field-work, sampling and modeling activities and can provide effective tools for rehabilitation, conservation and protection of water resources.

http://sembraragua.blogspot.com.es/2011/06/introduccion-la-recarga-artificial-de.html

Artificial Recharge of Groundwater – Increasing Security, Availability and Quality of Water Resources

Water harvesting is among important water management instruments and can take different forms. Artificial recharge of groundwater, as explained in “sembraragua.blogspot” by Professor em Rafael Fernández Rubio, plays a very important role for the availability of water resources for meeting the increasing demands on water resources especially in arid and semi-arid regions. It allows storage of excess surface water, mitigates evaporation losses and enhances the performance and functionality of aquifers in a number of ways, e.g. capacity, availability, security and quality of water resources. It can, also, add other environmental and water conservation benefits, through creation of pressure barriers.

Professor em Rafael Fernández Rubio, gives an interesting and full introduction the subject of Artificial Recharge including: Definitions and Objectives; Conditioning factors (characteristics of recharge water, characteristics of the receiving aquifer, hydro-climatological features, environmental characteristics of the environment, alternatives recharge facilities); Resetting Devices (surface devices, deep devices); Water Treatment by Recharge; Clogging System. Professor em Rafael Fernández Rubio ends by Bibliography of Interest for further reading. An additional feature of “sembraragua.blogspot” is that it provides supplementary translation from Spanish to other languages with varying qualities for languages other than European ones.

http://sembraragua.blogspot.com.es/2011/06/introduccion-la-recarga-artificial-de.html