Part II of the ‘Sustainability in Science and Technology’ – The Human Performance.

The performance of humans is driven by diverse needs for food and security to overcome the challenges for decent live on Earth. 

This is an introduction to Part Two of the WEBINARS on “Sustainability in Science and Technology” – The Performance of humans’, hosted by sustain-earth.com.

Africa is the origin of homo sapiens and the renewables helped their evolution during millions of years and their migration out of Africa 70 000 years ago.

During the hunting gatherer era humans started to master artefacts and simple tools, also to build small communities and settlements. They domesticated animals, plants and learned to cultivate land and build shelters for their living.

The agricultural era that started 10 000 years ago culminated in an outstanding ancient Egyptian civilisation that lasted 3000 years. During this era people used water to promote agriculture, farming and to produce food. These achievements were made possible by taking advantages of renewable resources only, the sun (heat and light), water from the Nile and limited use of natural resources.

The mechanisation of agriculture in the 18th century during the first industrial revolution triggered increasing use of artificial pesticides and fertilisers. However, the limited water resources on Earth caused new needs for diversification of water production and management in order to have clean, affordable and accessible water for the growing population and the increasing urbanisation. The first industrial revolution involved various manufacturing processes supported by water and steam power.

The second industrial revolution in Britain was based on increasing electrification and use of combustion engines, rapid standardisation and industrialisation of many sectors in the 19th and 20th centuries. The widespread developments of the first and second industrial revolutions created huge pollution and waste in the atmosphere, the hydrosphere and the biosphere that continued and continued until now. New but limited renewable technologies, however, with zero net emission of green house gases started to appear by the end of the 20th century. This was due to the fear that fossil fuels are limited and have negative impacts on life. These developments were possible by more affordable access to renewable energies and the expanding use of alternating and direct current motors. Indeed, there are still several environmental challenges for scaling-up and scaling-out the renewables. Among these are the storage of renewables and integrating them in well-established grids. However, renewables and batteries require needs for new materials and further expansion of mining and processing that are dependent on heavy consumption of water and energy.

The third industrial revolution of digitalisation started by the end of the 20th century and opened new possibilities for increasing efficiencies and volumes of communication not only between humans but also between humans and machines, and between machines and machines as well.

The Information-Communication-Technologies and the Internet of Things will allow extensive and intensive expansion of Science and Technology with new gates for innovation worldwide on all levels and in many sectors. We have now many examples around the world which demonstrate that the boundaries between science fiction and technological realities are vanishing very very fast. We are, now, in urgent needs to proceed with the 4th industrial revolution and to continue with Artificial Intelligence and Machine Learning but with careful attention to the demands of renewables, preservation and protection of life.

Leave a Reply