New Addition – Editorial: Professor Anders Wörman. ‘KTH’ Royal Institute of Technology, Stockholm.

Professor Anders Wörman is the Head of division for Resources, Energy and Infrastructure, The Royal Institute of Technology, Stockholm (https://www.kth.se/profile/worman).

His research interest spans over wide-range of trans-disciplinary and trans-sectorial areas in engineering sciences and technology within water resources, hydrology and environmental hydraulics. Ongoing research are due to water and energy availability in terrestrial hydrology, effects of climate fluctuations and landscape changes on runoff, hydropower regulation, extreme flows in rivers and safety of embankment dams. His skill and expertise include: environmental impact assessment; water quality; water resources management; engineering, applied and computational mathematics; hydrological modeling; rivers; civil engineering, hydrologic and water resource modelling and simulation; water balance; waterfall runoff modelling; aquatic eco-systems; surface water geo-statistics; contaminant transport; groundwater penetration; radar and climate change impacts.

Professor Wörman was co-founder and the first manager of the undergraduate educational programme for Environmental and Aquatic Engineering at Uppsala Univ. before being chair prof. at KTH. KTH has dedicated research programmes in Applied Sustainability. One of such programmes is oriented towards finding customized solutions to develope sustainable and resilient technical applications that are climatically and environmentally suited for Africa (https://www.kth.se/en/om/internationellt/projekt/kth-in-africa/africa-1.619441). It is interesting to mention that the world longest river, the Nile, spans over large catchment areas that are located in different climatic/weather (spatio-temporal variability in temperature and precipitation) zones (http://atlas.nilebasin.org/treatise/nile-basin-climate-zones/). These special features of the Nile call for technologies that can cope with climate-environment changes of both natural and man-made origins. Combination of natural and man-made climate changes will certainly induce severe constraints and limitations on what, why and how ‘Water, Energy and Natural Resources (fossil and mineral deposits, eco-systems and biodiversity)’ Nexus need to be carefully accessed on long-term and large-scale bases. In this context, Prof. Wörman has trans-disciplinary and trans-sectorial knowledge suited to handle the complex, inextricable and multi-layered interactions within and between Water, Energy and Natural Resource Systems. These interactions are imperative to understand of coherent and resilient coupling with the Socio-Economic-Environment ‘SEE’ aspects in communities living in river-catchment systems in Africa. These issues are of special interest as river-systems are the dominant landscape units with huge importance for preservation and protection of renewable and fossil resources.

Leave a Reply