Author Archives: farideldaoushy

COP27: Scaling-Up and Scaling-Out The Transition to Net-Zero Carbon

🛑 This is short summary of some important and strategic Highlights of COP27. To be held in Egypt Sharm El-Sheikh, 6-18 November 2022.

Informative Summary on the strategic approaches (interviews with Mahmoud Mohieldin) to deal with the challenges and expectations of what COP27, Sharm El-Sheikh 6-18 November 2022, will bring to the table that are different than other COPs. Here are several key and strategic issues for implementation of measures and integrated actions to be considered in #COP27:

  • investments in regional dimensions with pipeline of investable projects in #energy, #decarbonization, #adaptation, ….. including localisation of climate actions with #regional examples to expand the work of academics and science.
  • mitigation needs to be kept in track but #adaptation and #resilience (early warning systems) needs to be dealt with seriously and given sufficient attention to #finance, #technology and appropriate regulations for #changing behaviour.
  • loss and #damage e.g. small islands, poor countries to get compensated and enhancing the need to get our act together.
  • more #engagement and participation from the #private sector by active investment in greening industries, e.g. within resilience and adaptation; scientific support and #building capacity, ….. .
  • innovation in #private sector so companies can promote more inspiration where governments can provide them with the tools they need to facilitate green carbon transition, e.g. #green #hydrogen (less mitigation and more adaptation) to make more shift from 80% mitigation versus 20% adaptation.
  • promoting and #integrating young entrepreneurs including #SME. Many jobs can be created where the future wouldn’t only benefit the big names and big companies so as the ongoing green transition can be filtered down.
  • more #attention to the other goals of the #UN #SDGs and not only climate action, e.g. global biodiversity, nature and environment by more attention to overall sustainable development goals. For example linking climate finance with biodiversity finance, protection of land degradation and more coupling of #environment, #climate and #biodiversity nexus.
  • to be more on the track for achieve the targets as the world is still under investing with 80% of our economies are so far based on fossil fuel specially that the ongoing transition may take decades. The world is under huge pressure to burn whatever they have of fossil fuel. Renewables solar, wind, green hydrogen and return to nuclear needs enormous efforts specially #decarbonisation of #industires with intensive energy need cement, steel, shipment, …. . There are economies that demonstrated success in tuning their economies by adaptation of solar energy such as India, China, Egypt, also Morocco biggest in solar energy.

This said, some important aspects that were not mentioned in the interview but yet included in COP27 program are the increasing attention to the importance of the global water cycle, water resources and biodiversity both on land and under the water in order to achieve net zero-carbon in the atmosphere. This includes of course to have a healthy and wealthy photosynthesis production, e.g. forests, vegetation cover and farming on land as well as the oceanic and marine components of biodiversity. Indeed, the transition to zero-carbon means that we in reality seeking balance in the global carbon cycle and its therefore logic to seriously consider the role of photosynthesis, water resources and nutrients as these are essential components for the natural balancing of the carbon cycle itself. Based on this it is crucial to widen our focus on many other goals as defined by the UN-SDGs and the Paris Agreement itself.

Promoting ‘ESG’ in Egypt – MOGTAM3i.TECH Plans to Achieve 2030 SDGs.

Already before the Paris Agreement several major structural changes emphasizing the importance of social value and the use of technology to serve the community have taken roots in Egypt after a very long period of recession. Though the path has been full of obstacles and not at all straightforward many technology serving communities have succeeded to be developed and established. Using science and technology as instruments for overall economic and social developments and for better services to the citizens has been among national policies. Also, for increasing the socio-economic empowerment of youth, women, people with disabilities and vulnerable segments, and opening new horizons for social entrepreneurs and new ventures for job creations, and for achievements of the global sustainable development goals.

A leading organization, ‘ACSR’ The Arab Council for Social Responsibility, with the mission to transform its programmes and activities from concept to value for the society and economy, has taken major and serious steps to implement actions on different sectors and levels (https://mogtam3i.tech). The mogtam3i.tech has a Facebook page demostrating their activities (https://m.facebook.com/story.php?story_fbid=500962601093480&id=345832539939821&sfnsn=scwspwa).

MOGTAM3I.TECH is a Technology Serving Community for light on the impact of technology on the overall economic and social development towards the provision of better services to the citizens and to empower the social fabrics of the society across all sector activities. See more at (https://mogtam3i.tech). This is indeed among the growing interest to strengthen ESG ‘Environmental, Social, and Governance’ https://www.investopedia.com/terms/e/environmental-social-and-governance-esg-criteria.asp; https://corporatefinanceinstitute.com/resources/knowledge/other/esg-environmental-social-governance/).

See how ESG is taking roots in Egypt mogtam3i.tech

The Global Water Cycle, More Rain but Less Water, Why? – Impacts on the Nile Basin.

The global water cycle is undergoing continuous and major perturbation what regards for example spatio-temporal changes in intensity and frequency of extreme events of flooding and wet-dry periods of land. Our understanding about climate changes has improved enormously, through the advances in GCM ‘Global Climate Models’, e.g. the predictions of tipping points in the earth’s system and associated severe heatwaves due to increase in temperature from the continuous emissions of greenhouse gases. Yet our knowledge on the impacts of climate change on the water global cycle is still improving specially the uncertainties mentioned above which is important for developing a sustainable-resilient agro- and food production.

New research is indicating that heat-induced global water cycle changes pose significant challenges to global ecosystems, soil stability and desertification, agro-food industries and human society in general. Indeed, quantifying historical water cycle change though very important to understand and assess , it is difficult owing to shortage of direct observations. In particularly over the ocean, where major parts of global precipitation and evaporation occur in the world oceans. Researchers have found new tools to improve our knowledge about key parameters processes associated with changes in the global water cycle. Air–sea fluxes of freshwater imprint on ocean salinity such that mean salinity is lowest in the warmest and coldest parts of the ocean, and is highest at intermediate temperatures. These findings were used to track salinity trends in the warm, salty fraction of the ocean, and quantify the observed net poleward transport of freshwater in the Earth system from 1970 to 2014. It was found that poleward freshwater transport from warm to cold ocean regions has occurred at rates that is not replicated in the current generation of climate models. Should this be the case, the implication is that the historical surface flux amplification is weaker climate models compared to observations. The results establish historical constraint on the poleward freshwater transport that will assist in addressing biases in climate models (https://www.nature.com/articles/s41586-021-04370-w) and thereby help us to better predict the behaviour and details in the global water cycle.

Climate change will therefore be intensifying the Earth’s water cycle at twice the predicted rates (https://amp.theguardian.com/environment/2022/feb/24/climate-change-is-intensifying-earths-water-cycle-at-twice-the-predicted-rate-research-shows; https://newsroom.unsw.edu.au/news/science-tech/global-warming-amplifying-our-water-cycle-and-its-happening-much-faster-we). Rising global temperatures and the increasing amount of heat have shifted at least twice the amount of freshwater from warm regions towards the Earth’s poles than previously thought as the water cycle intensifies, according published analysis in Nature. In the future there will be more rain but less water as this is shown from Climate projections suggesting that, by end of the century, the amount of rain for example in the Upper Nile basin could increase by up to 20%. A new paper by the same group, shows that, despite more rainfall, devastating hot and dry spells are projected to become more frequent in the Upper Nile basin (https://theconversation.com/in-the-future-there-will-be-more-rain-but-less-water-in-the-nile-basin-129360?utm_medium=ampemail&utm_ source=email).

These trends in the global water cycle demonstrate that ‘RENEWABLE SOIL TECHNOLOGIES’ need to take in consideration the impacts of climate change on agriculture and agro-industries by being directly dependent on the renewable water resources. The Nile in general – world’s longest river – runs through 11 countries in Africa and its basin covers about 3 million sq kms, i.e. about 10% of the continent’s landmass. A huge population, about 250 millions people, is dependent on the Nile in Ethiopia, Uganda, South Sudan, Sudan and Egypt. Almost all of the rainfall falls and feeds upstream countries of the Blue and White Nile – in the upper Nile (South Sudan, western Ethiopia and Uganda). While the lower Nile basin receives very little rainfall (Sudan and Egypt) and thereby depends heavily and directly on the Nile for water. Climate projections by the end of the 21-century, suggest that the rain in the Upper Nile basin could increase by up to 30%. However, despite more rainfall, the devastating hot and dry spells are projected to become more frequent in the Upper Nile basin.

Currently, about 10% of the basin’s population faces chronic shortages due to seasonal aridity and huge unequal access to water resources. The proportion of population that will face water scarcity will increase to 30% by 2040, i.e. more than 80 million people. These threats from hot and dry conditions will kill crops, reduce hydropower, diminish the water available for people and industry and heighten tensions over the distribution of regional water resources. By 2040, a hot and dry year could push over 45% of the people in the Nile Basin – nearly 110 million people – into water scarcity. In addition to this the population growth would drive water scarcity in the Upper Nile.

In conclusion, climate and population changes in the Nile Basin will project onto an already complex and tense socioeconomic and political landscape.

Human Madness and Suicide Nuclear-Wars.

Amid the disastrous threats of climate change and the accelerating degradation of the earth’s spheres regulating our life conditions, e.g. atmosphere, biosphere, hydrosphere and the cryosphere, the human madness, or rather the institutional madness of our modern societies, is extending its horizons to new unprecedented and unimaginable levels of total annihilation.

As by today the governance of our societies is threatening all forms of life on earth with various arguments that we need security and safety in the world. We as citizens need to address fundamental questions for our own security and safety not only for us but also for future generations: do wars, in particular nuclear ones, make us more secure and safe? In many situations in the past, and even now, evidence based reasons and accurate rationality to conduct wide-scale wars were/are absent and decisions were/are taken anyhow, e.g. Iraqi war. Decisions to make wars were taken under false arguments with no justification or even minimal efforts to seek diplomatic solutions. The threats of the nuclear weapons aren’t new at all and have been present even after the end of WWII. In 1953, in the Korean war and with the conflicts between e.g. the USA and China during the Presidency of D. D. Eisenhower (https://www.history.com/.amp/this-day-in-history/armistice-ends-the-korean-war) were the threats for nuclear wars were very alarming. The plans to kill over 100 million Chinese were even described as good plans.

We need to take in consideration that though the Treaty on Non-Proliferation of Nuclear Weapons (NPT), also called Nuclear Non-Proliferation Treaty, we still live under constant threats even from those who signed the NPT-treaty. The NPT-treaty was signed by the UK, USA, the Soviet Union and 59 other states in 1968 under which the three major signatories, which possessed nuclear weapons at that time, agreed not to assist other states in obtaining or producing them. The NPT became effective in March 1970 and extended indefinitely and without conditions in 1995 by a consensus vote of 174 countries at the UN. As of 2007 three countries (India, Israel and Pakistan) have refused to sign the treaty, and North Korea has signed and then withdrawn from the Treaty (https://www.britannica.com/event/Treaty-on-the-Non-proliferation-of-Nuclear-Weapons). The Non-Proliferation Treaty is uniquely unequal, as it obliges nonnuclear states to forgo development of nuclear weapons while allowing the established nuclear states not only to keep theirs but also to expand on their levels of threats and dimensions.

It is indeed, hard and even impossible to describe in moral terms how we can still afford to live under the threats of nuclear wars. Many people are still unaware of the consequences of nuclear wars. We as citizens live under constant and repeated threats that nuclear wars can take place anywhere and at anytime and indeed there many fingers around the world that can push the buttons of nuclear mass-destructive weapons. With advanced nuclear technologies, several countries have updated their nuclear arsenal (https://en.m.wikipedia.org/wiki/List_of_states_with_nuclear_weapons; https://www.statista.com/statistics/264435/number-of-nuclear-warheads-worldwide/) to unprecedented levels that can blow up all life for ever on the whole planet into ashes. A threat not only facing all of us but all other species as well including the whole biosphere. We aren’t properly informed about such threats and get incomplete information that either scale down the nuclear threats or informing us that we have protection and safety measures against them. Arguments are still used that nuclear wars are needed to provide security for nations without considerations to the security of us individuals that are even outside the conflict zones as the debris and radiation fallout from nuclear weapons have no boundaries even in the case of using the so-called tactical nuclear weapons for destruction of major cities, e.g. London, Paris, Berlin, New York, Moscow. Though there is enough firepower to obliterate life on earth and even if nuclear weapons aren’t used, modern life can be also destroyed by sophisticated conventional weaponry too including the piling up of refugees, homeless people and a wide-range of associated economic and food crises.

What can we as citizens do? We can do a lot, first we need to understand the dimensions of nuclear wars (https://youtu.be/2uv4HpQjTD4) and most importantly we can pursue joint pressures on world leaders to remove all together the constant threats of out-dated reasoning and thinking of such suicide-bombs (https://youtu.be/UJKQu8bmwPs).

Funding of Science, Technology and Innovation in Egypt.

The Egyptian Ministry for Scientific Research has various goals to overhaul Science and Technology (S&T) activities in Egypt. It continues to restructure the S&T governance and management in Egypt, in addition to the creation of the Higher Council for Science and Technology (HCST), and the Science, Technology & Innovation Funding Authority ‘STDF’ (https://stdf.eg/web/page/64152). Funding in this context is crucial for boosting the ongoing transition to Sustainable Societies. The STI ‘Science Technology Innovation’ bodies in Egypt comprise: HCST; STDF; MOSR ‘Ministry of Scientific Research’ please; ASRT ‘Academy of Scientific Research and Technology as well as Research Institutions and Universities.

It is crucial to continue executing serious, ambitious plans and programs to boost the scientific research drive in long-term Sustainability actions that will definitely be positively reflected in the national economy and the societal development. The mandates of STDF involve funding of S&T to support cycle of innovation; development of Egyptian research and innovation capabilities; ensure the integration of Science, Technology and Innovation (STI) elements in national strategies; and bridge the gap between industry & Academia. In this context, STDF stimulates the Egyptian scientific society by funding distinguished research papers and establishing scientific partnerships with scientists from many advanced countries in order to keep track of quickly advancing technology, and be open to different societies, as well as, new economic unions, compete on the international arena, link scientific research to technological development and cooperate with civil society institutions to activate their role in the integrated scientific research system.

Here is a call for funding applications of Egyptian researchers at universities and research centre’s. These are in a framework of bilateral collaboration Egypt-Germany, deadline of applications is June 1st 2022. https://stdf.eg/web/grants/open

تعلن هيئة تمويل العلوم والتكنولوجيا والابتكار (STDF) بالتعاون مع مؤسسة التبادل الأكاديمي الألمانية(DAAD)عن فتح باب التقدم لمنحة سفر شباب الباحثين ضمن مشروع بحثي (GE-SEED)، بتمويل يصل الى ١٥ ألف يورو في السنة، للباحثين من الجامعات والمراكز البحثية المصرية.

يتمثل الهدف الرئيسي لهذا البرنامج في تشجيع الشراكات بين الجانبين وتعزيز التعاون بين فرق البحث المصرية والألمانية وبالأخص شباب الباحثين وطلاب الماجستير والدكتوراه، وذلك في إطار مشروع بحثي مقدم من الجانبين لمدة تصل إلى عامين،
📌آخر موعد لتلقي طلبات التقدم للمنحة يوم ١ يونيو ٢٠٢٢، الساعة الثانية ظهرًا.
للاطلاع على كافة الشروط، والمُستندات المطلوبة، يرجي زيارة الرابط التالي:

https://stdf.eg/web/grants/open

📢 Announcement: Virtual Symposium on “Creativity and Innovation for Sustainability. 21 April, 10 pm Cairo.

In the memory of the International Day for Creativity and Innovation, the “Arab Federation for Creativity and Innovation” rowadalaamal.com holds a Virtual Symposium on “Creativity and Innovation for Sustainability”. This Virtual Symposium is being held under the care of “Arab Federation for Sustainable Development and the Environment” www.ausde.org.

You are invited to join this Virtual Symposium by using the link given below. It will take place at 10pm Cairo time and 11pm Mecca time.

✅ برعاية الإتحاد العربي للتنمية المستدامة والبيئة
⭕ يعقدالمجلس العربي للإبداع والابتكار بمناسبةاليوم العالمي للإبداع والابتكارالمؤتمر الافتراضي
🤚بعنوان:الإبداع والابتكارمن أجل التنمية
🔹الخميس 21 / 4 /2022
⏳الساعة11مساءمكةالمكرمةو10القاهرة
📌الرابط:
https://us02web.zoom.us/j/84163868686

The Dream of All Dreams – A Love Song in a Strange Land.

The dream of all dreams, is just a dream. Merely a dream, a dream of all dreams. Day and night, year after year, generation after generation; we all have dreams. Peaceful dreams, dreams we all dream but always end with dreams for safe and prosper life. Dreams for peace, peace with cries and tears that turn fear and hopes to series of dreams. The dream of all dreams, is just a dream.

The dream of all dreams, is just a dream. Thoughts of trust, yes trust and not mistrust. Dreams to bring us together with respect and care, to get us away from division. Division of all of us; taking side, with or against. It is about us, us? but who is us? We and they become you and me; you against me and me against you, who are you? The dream of all dreams, is just a dream.

The dream of all dreams, is just a dream. Dreams for peace, become dreams for war. The dream of understanding you becomes a dream of understanding me. Who are you? The dream of information becomes a dream of misinformation and what to do? The dream of helping becomes a dream of fighting, to get more and more, from you and me. The dream of all dreams, is just a dream.

The dream of all dreams, is just a dream. Energy, is a dream for security, a dream of economy. The dream for security becomes a dream of hate, dreams of guns and bullets. The dream of economy at homes; it is heat, light and food, is also a dream of energy. Volatile and insecure dreams as oil and gas triggering wars, oil wars, economic wars, insecurity wars. Energy wars with guns and bullets from time to time, here and there, endless wars, ugly wars. Barbaric wars fuelled by slaves of wars and arms. The dream of all dreams, is just a dream.

The dream of all dreams, is just a dream. With whom to talk and walk the walk, together, all together. World in blocks and Unions, east and west; and something else. Blocks in fate, which fate? Volatile blocks, volatile fates, breaking down now and then, here and there calling for wars. As in traffic, blocks and fates are just communication roads fuelled by oil; right or left with red zones, forbidden zones, insecure zones but always crossed. The dream of all dreams, is just a dream.

The dream of all dreams, is just a dream. West and East, North and South; opposite blocks with own goals or no goals. As in chemistry: ‘acids’ and ’alkalines’; or in physics: ‘positive’ and negative’ charges. In peace, they follow laws of chemistry and physics to trade; win-win with no loss. In conflict, as ‘particles’ and ‘anti-particles’ in physics; west-east and north-south, fight together to anni-hilate each other. But unlike in physics, no conservation to follow, always lose, just lose and great losses. The dream of all dreams, is just a dream.

The dream of all dreams, is just a dream. Renewable dreams not fossil dreams. Energy isn’t for free, produced and used, but never wisely and clean. Energy needs minerals, fossil minerals; mined and processed, yielding waste, waste and more waste. Conservation of materials; life-cycles for renewables, recycling for circular and clean economy. A dream, easy to say year after year, decade after decade, it is still a dream, an unachievable dream, a dream, a dream that we all dream. The dream of all dreams, is just a dream.

The dream of all dreams, is just a dream. Security in peace; energy for prosperity. Prosperity, Security and Peace aren’t for free. With and without gas, oil and coal, we still have dreams. Renewable dreams. Dream of all dreams; clean air, water and food, clean life; prosperity for all with security and peace. It is said: the renewables are the solution; do we have all the solutions? Solutions to live in prosperity, security and peace? The dream of all dreams, is just a dream.

The dream of all dreams, is just a dream. Energy, Economy and Prosperity in Security and Peace, for all; why West and East, North and South? Why they and we; you and me? Would the invisible walls, separating us from achieving prosperity goals, the UN-SDGs, go away and become ruins of the past as the Berlin wall? Are we still preparing for a grand war, a nuclear, a Third World War. Let it be Actions for the UN-SDGs and not for another World War. The dream of all dreams, is just a dream.

Falling in love to break away from industries and blocks for wars, carrying away all of us from peace, in a global captivity of irresponsible consumption of minerals; natural and fossil. The dream of all dreams, a dream of love that is requiring from us a love song, but how shall we sing a peace song in a strange land of wars? Let our thoughts of circular economy and the meditation of our hearts and souls for prosperity, take us away from the disease of wars for growth economy.

Ever, forever …. Secrets of Life

Ever, forever and ever, life forever. I have always life in me, ME ‘Mother Earth’. My star, my Sun, we share a secret together. It is the secret of life in you and me. My life, all forms of life, without you it wouldn’t be any life in ME, you and me. My star, my Sun, your gravity is holding me, is moving me around you, forever. My star, I am the only planet in a cosmic family that has life, an eternal life. Ever, forever and ever, life forever.

Ever, forever and ever, life forever. My star, burning star, reactor, fusion reactor. My star, my sun. The life in you isn’t like the life in me. I am a planet not a star. Your heat and energy are enormous. I have spheres protecting, safe-guarding me. My star, my sun. Materials and magnets screening the lethal radiation and particles from you. Ever, forever and ever, life forever.

Ever, forever and ever, life forever. Fulfilling my dreams, the dreams of life in me. The one, only one shining life on me. Giving life, life everywhere in and on ME. Life on land, life in soils, life in forests. Life in waters, lakes, rivers and oceans. Ever, forever and ever, life forever.

Ever, forever and ever, life forever. Energy in your light, shining on me, fuelling me. Photons falling on me, carrying energy, energy in motion, propagating in me. The invisible photons, colourful quanta and phonons, giving life to cells in my water and on my land. Flow of energy; atoms and molecules fuse together, generating life and energy. Ever, forever and ever, life forever.

Ever, forever and ever, life forever. Cascade of life, biodiversity expanding in me. Chains and chains forming life, webs of life, feeding on each other, feeding on me. Day, after day, year after year, hundreds, thousands, millions, billions of years. Ever, forever and ever, life forever.

Ever, forever and ever, life forever. Life, lasting life, always young and fresh forever. Healthy and wealthy life; happily evolving ever and forever, here and there. Nature without schooling, ME myself a science-engineering university, all in all. Ever, forever and ever, life forever.

Ever, forever and ever, life forever. ME is a cyclopaedia and work in progress. The planet ‘Mother Earth’ and its star ‘The Sun’ have always secrets, yet are always generous. The nature and the power in ME, are legacies of life, forever. Did we understand and learn from them? Did Homo Sapiens sustain the renewable gift of life that is given to them for free? Yes or No. If yes how and if no why?

The secrets my friend, as we know them by today, seem to be blown, blown away, even gone gone with the wind, may be gone forever.

They Asked Me – Mother Earth.

They asked me, they asked me about you, my mother, the mother of all mothers. The mother of all species, the Homo Sapiens, you and me, the children of a mighty mother, mother Earth. They asked me about you, I said: I can’t live without you.

They asked me, they asked me about you, my mother, you said: let me, let me dance with my partners. Let me dance with the music, the music of gravity waves of my galaxy. The milky way, the sun and its planets, the planetary system in our universe. Let me dance with my star, a twinkling star, a living star, a shining star. Shining on me, warming me for free and nourishing me with vitamin D.

They asked me, they asked me about you, my mother, you said: let me feel the gentle moist in the air, gently touching my skin. Moist that evaporates up to the sky, forming clouds in the sky. Clouds turning to tears and sometimes to rain. Rain that fall and flow on my skin, nourishing me. Showers of a crying sky, cleaning me and the air, the air around me, fresh air that we breathe, you and me.

They asked me, they asked me about you, my mother, you said: let the water flow through my skin, the soil on the land, let the water flow in rivers, the arteries of life. Let the water flow, stay here and there, in lakes, large and small. Let the water flow, flow and slowly seep through my skin, years after years, thousand or million of years, deep and deeper to rest after a long, a long journey. Rest and sleep deep in me, to be fossil, in my ground, groundwater in aquifers. Let it flow, flow here and there, to a large space, huge, an endless space, the sea. There, it gets warm and evaporate again and again to moist, the moist that is longing to come back to nourish me.

They asked me, they asked me about you, my mother, you said: let me be happy, happy for the free gift from the sky, pristine water, clean water, water that we drink, you and me. Nourishing my skin with minerals and nutrients once were eroded from my skin, a long the way, long way, everywhere. An eternal journey of water on, or in, my body, driven in motion by the heat of a star, a burning star. Keeping me a life, a life in cycles here and there refreshing my skin, thanks to its organic fabrics, catching the moist from air the and holding it in my skin, so it doesn’t get dry and die. A renewable life, a sustainable life, a legacy of the generous nature.

They asked me, they asked me about you, my mother, you said: let me, let me feed you and all other species, the animals and plants living on my skin. Species that I created in thousands or even in millions of years. It is the cry of the sky, the heat and shine of the sun nourishing me. Thanks for a free and renewable energy from a twinkling star, shining on me. It is the skin covering my body, a primordial and dynamic bio-geo-chemical reactor full of life on land and under the water. Turning the photons of the light, the molecules of the water, the substances of life in my body, and the trace-gases in, and from, the air ‘carbon dioxide’ to green forests, and a food-chain of vegetables and fruits on land, and fish and shellfish from rivers, lakes and seas. We also lucky to get fresh oxygen, for all species on land and under the water, to breathe.

They asked me, they asked me about you, my mother, you said: let me be warm, but not so warm in the thin cover on my skin, the cover above me, around me. Air masses and moist that is always in constant flow. It is a global flow from my waist at the equator. A flow here and there, up and higher up in spheres around me. All, or some of them, fall down, and down again to the poles, to be at rest and be in peace. The vapour in my clouds get squeezed to snow and buried in ice, polar ice and glaciers along the way. The magic of the heat from the sun forces the cover of my skin to change phase: moist on leaves and vapour in turbulent motion, silent waters and falling water, the waterfalls, falling snow, freezing to ice and in sheets of ice.

They asked me, they asked me about you, my mother, you said: let me feel, feel the energy in my body, the hydro-power in a flowing water, an energy in motion from upstream to down stream, from the land of the high mountains to the deltas of the low land at the sea. Let me, feel the energy hidden in air, the pressure gradients above me, the air masses blowing with the moving wind here and there, on the land and above the sea. Let me feel the energy within me, geothermal energy deep in my hot body, the hot vapour bursting out of the dark space deep in my body to see the light of the day at the surface of my skin.

They Asked Me – Mother Earth.

They asked me, they asked me about you, my mother, the mother of all mothers. The mother of all species, the Homo Sapiens, you and me, the children of a mighty mother, mother Earth. They asked me about you, I said: I can’t live without you.

They asked me, they asked me about you, my mother, you said: let me, let me dance with my partners. Let me dance with the music, the music of gravity waves of my galaxy. The milky way, the sun and its planets, the planetary system in our universe. Let me dance with my star, a twinkling star, a living star, a shining star. Shining on me, warming me for free and nourishing me with vitamin D.

They asked me, they asked me about you, my mother, you said: let me feel the gentle moist in the air, gently touching my skin. Moist that evaporates up to the sky, forming clouds in the sky. Clouds turning to tears and sometimes to rain. Rain that fall and flow on my skin, nourishing me. Showers of a crying sky, cleaning me and the air, the air around me, fresh air we breathe, you and me.

They asked me, they asked me about you, my mother, you said: let the water flow through my skin, the soil on the land, let the water flow in rivers, the arteries of life. Let the water flow, stay here and there, in lakes, large and small. Let the water flow, flow and slowly seep through my skin, years after years, thousand or million of years, deep and deeper to rest after a long, a long journey. Rest and sleep deep in me, to be fossil, in my ground, groundwater in aquifers. Let it flow, flow here and there, to a large space, huge, an endless space, the sea. There, it gets warm and evaporate again and again to moist, the moist that is longing to come back to nourish me.

They asked me, they asked me about you, my mother, you said: let me be happy, happy for the free gift from the sky, pristine water, clean water, water that we drink, you and me. Nourishing my skin with minerals and nutrients once were eroded from my skin, a long the way, long way, everywhere. An eternal journey of water on, or in, my body, driven in motion by the heat of a star, a burning star. Keeping me a life, a life in cycles here and there refreshing my skin, thanks to its organic fabrics, catching the moist from air the and holding it in my skin, so it doesn’t get dry and die. A renewable life, a sustainable life, a legacy of the generous nature.

They asked me, they asked me about you, my mother, you said: let me, let me feed you and all other species, the animals and plants living on my skin. Species that I created in thousands or even in millions of years. It is the cry of the sky, the heat and shine of the sun nourishing me. Thanks for a free and renewable energy from a twinkling star, shining on me. It is the skin covering my body, a primordial and dynamic bio-geo-chemical reactor full of life on land and under the water. Turning the photons of the light, the molecules of the water, the substances of life in my body, and the trace-gases in, and from, the air ‘carbon dioxide’ to green forests, an enormous food-chain of vegetables and fruits on land, and fish and shellfish from rivers, lakes and seas. We also lucky to get fresh oxygen, for all species on land and under the water to breathe.

They asked me, they asked me about you, my mother, you said: let me be warm, but not so warm in the thin cover on my skin, the cover above me, around me. Air masses and moist that is always in constant flow. It is a global flow from my waist at the equator. A flow here and there, up and higher up in spheres around me. The all, or some of them, fall down, and down again to the poles, to be at rest and be in peace. The vapour in my clouds get squeezed to snow and buried in ice, polar ice and glaciers along the way. The magic of the heat from the sun forces the cover of my skin to change phase: moist on leaves and vapour in turbulent motion, silent waters and falling water, the waterfalls, falling snow, freezing to ice and in sheets of ice.

They asked me, they asked me about you, my mother, you said: let me feel, feel the energy in my body, the hydro-power in a flowing water, an energy in motion from upstream to down stream, from the land of the high mountains to the deltas of the low land at the sea. Let me, feel the energy hidden in air, the pressure gradients above me, the air masses blowing with the moving wind here and there, on the land and above the sea. Let me feel the energy within me, geothermal energy deep in my hot body, the hot vapour bursting out of the dark space deep in my body to see the light of the day at the surface of my skin.

Life on Earth – They Told Us ….

They told us to go to school and universities, to get work and have a job. To join the labor market, and the production wheels of agriculture and industry. They also said do profitable research and innovate. Get patents and open businesses.

They told us grow big and join the growth-economy ‘Take, Make and Waste’. It was supposed to be a linear economy but for some it meant an exponential economy. They told us move from land and go to cities. Be an urbaniser, get a house and build a family. And we did all of this. But then.

They told us, it is becoming crowded, so remain in competition. It is with no limits and enough became not enough. They told us, it is for our survival. To be promoted, get a decent job and move to a smart city. To afford processed food and have bottled water on your table. But then.

Then they told us, get better clothes, be dressed-up and consume more to fit in smart cities. Have a dishwasher, a laundry, a car and be more on the roads.

But this wasn’t enough, work more, even harder and move faster, get a smart phone, go digital 24/7, travel ultrarapid by air to join globalisation and to trade online. Be much smarter, get a robot, be boosted by Artificial Intelligence and Machine Learning to win the game.

Then, if you still have time, escape the busy life in cities, be on holidays far away in a quiet place and relax.

They told us, if all of this isn’t the solution for quality-life, then no worries it would be new possibilities for another life, a better life on Mars.

They forgot to tell us, the planets’ natural resources are finite and we need responsible production, sustainable use and wise consumption, until it became late. Even too late.

They forgot to tell us, in this digital era we aren’t only competing with each other, we are also competing with fixed digital frames, robots and intelligent machines that if we fail to control them, they will control us.

They forgot to tell us, that we need clean air to breath and pristine water to drink. They forgot to tell us, we need healthy and wealthy biosphere with free eco-system services.

They forgot to tell us, what energy is and we need the sun. Better life-quality under the water and on land with fertile organic soils for nutritious, healthy and unpolluted food.

They forgot to tell us, green forests in a clean atmosphere can mitigate our planet from heating-up. They forgot to tell us, we need our waters and the environment to be free from plastics, waste and pollution.

They forgot tell us, we need to have a social life. Be humans that can serve, get served with quality in focus. They forgot to tell us, there would be new generations to take over after us.

Yes, they forgot to tell us, how to live a life worth living, they even keep and keep forgetting and by the end it is becoming more and more etched in our genes.

Goals ‘the UN-SDG’ and COP-Conferences with no steps, sacrifices and effective actions are just a wish. Merely a wish to escape from what is known as the Anthropocene.

So, no worries we can dream and still dream about a new Life on Mars.

A Poem For Humanity – Once Upon A Time

Once upon a time, there were people, the same people. People of the same roots but here and there. They lived on land and moved on land, in valleys and mountains, crossed the seas and the rivers, but still the same people.
 
Once upon a time, there were people, the same people. They weren’t plenty and life was simple but yet tough. With all the ups and downs, they could live on whatever they hunted, gathered or planted on their land.
 
Once upon a time, there were people, the same people. They lived on nature, clean nature, and shared what they had. They lived the life, as it was, full of risks, natural risks. But no worries, it was green and they were together, laugh and cry, all in all. 
 
Once upon a time, there were people, the same people. They were humble and full of trust, trust of fate, whatever fate. They were poor but not greedy.  They were sad, even very sad but still happy. They were helpless but could help and even hopeless but full of hopes.
 
Once upon a time, there were people, the same people. They shared the land, the water and the sun, the same sun that nourished their life, their stocks, the lifestocks. Life was tough with ups and downs, they could settle now and then. But it came times where they walked the walk, the same walk, all together. 
 
Once upon a time, there were people, the same people. They lived on what they got and what they got was with hands or simple tools. All from the water, the forest, the land, the soils, and what they farmed.
 
Once upon a time, there were people, the same people. Now they learned to think, master tools and machinery and use their brains for more knowledge. Now they can fly or sail here and there and be anywhere on four wheels, not anymore by horses and camels.
 
Once upon a time, there were people, the same people. Now they can sit and even relax, and watch themselves in solid frames, to see the magic of their hands, their memories and the thoughts in their brains.
 
Once upon a time, there were people, the same people. Now work can be done less and much less by hands, fast and even much faster than ever by fabricated memories, RAM and storage memories, even in invisible memories of a complex landscape of clouds.  
 
Once upon a time, it came a time where the compassion of people went away and their wisdom faded to nowhere. The care for one another became buried in sand, as they got rich and richer and with their money they can buy, trade and get even more and more.
 
Once upon a time, it came a time where they revolted upon themselves, upon each other and upon their land and home, the mother Earth. The same people became new people, different people, more and more people.
 
 Once upon a time, it came a time where people were led by knowledge, plenty of knowledge, knowledge that can fly. Now they can talk but not in person as knowledge can travel in the air and move free. More and more, fast and faster with no limits.
 
Once upon a time, it came a time where money and things can move free in space from place to place and fast as the light of the sun. Information and communication can connect not only people to people, but also people to things and things to things.  
 
Once upon a time, it came a time where it became difficult to know what is what and information can be misinformation here and there. People drifted away from each other by frictions and illusions that with knowledge anything is possible, even to control nature and the planet, any planet.
 
Once upon a time, it came a time of a war after war, escalation of wars, silent and cold wars. Wall after wall fell and the Berlin wall became ruins of the past.
 
Once upon a time, the remains of old wars didn’t heal. The pain of the deep wounds of the past was still there. The threats of the invisible walls, the armed and nuclear wars were still there.
 
Once upon a time, it came a time, the time of economic wars. Yet, there were no worries as with the power of money people can do more and get more. More and more from people, from nature and from the planet, yes any planet. No worries we can have more and get more. It is the time of ‘I, me and mine’.
 
Then it came a time, a time where peace and liable talks became far, still very far in the distant past of the old times of wars. Honorable life on Earth is now merely a mirage that became more and more etched deep, deeper than ever, in our genes.
 
Once upon a time, it came a time. It is the time of all times, the time of either people on the planet, the whole planet, either love each other and love their planet, or die all together.

The Emerging Technologies of Vertical Cities.

With increasing global population and the growing sizes of horizontal cities which require much areal expansion on land that otherwise can be used for parks and green areas, vertical cities may very well be an alternative for housing. Though horizontal cities have many advantages, brought comfort to their citizens, contributed in organization of daily life and facilitated employment and effectively coupled businesses to the socio-economic conditions in societies, Yet, the fast urbanization and the huge expansion of horizontal cities come with several forms of negative impacts such urban-heat waves, increasing pollution and waste, land degradation and associated effects on water, energy, natural resources, biodiversity and life-quality. These environmental changes along with climate change will still trigger further wicked and multi-layered threats.

Vertical cities can be can be constructed in different 3D-architectural structures with interlinked flours that have environment and self-sustainable towers extending high in the sky. These 3D architectural buildings can save energy, water and preserve horizontal land for forest, agriculture and food production as well as promotion of recreation and biodiversity. These are of importance for supporting the UN-SDGs and promoting life-quality and prosperity. With modern technology and AI ‘Artificial Intelligence’ maintenance and running costs of vertical cities can be more economic and effective than traditional horizontal ones (https://youtu.be/d0gqonPNBgU).

There are growing sources of information and data on vertical cities, the involved technologies and other issues of relevance. The vertical city organization (https://verticalcity.org/index.html), for example, has the mission to inspire the ongoing conversation for the creation of new systems of living and was established by Ken King in 2012, Its aim is to ignite global debates about vertical cities as a more sustainable future with large and urgent solutions to the existing problems. It has team members in Portland Oregon, New York City, and Shanghai. It is supported by dozens of architecture, urban planning, energy, and sustainability experts that contributed with insights into the vertical city concept.

There are also books that give wide-range of the state-of-art on vertical cities. The Vertical City book ‘A Solution For Sustainable Living is a massive, is a multicolor, seminal and beautifully printed book. In this groundbreaking work, the authors Kenneth King and Kellogg Wong interviewed more than 30 of the world’s top architects, urban designers, engineers, microbiologists, transportation and sustainability experts before developing their proposal for vertical cities (https://verticalcity.org/index.html). The book itself envisions a sustainable future as based on emerging technologies of Vertical Cities. A Solution to Sustainable Living is the first and only book of its kind but this Kickstarter campaign is about way more than the book. The author Kenneth King was born in Shanghai in 1933 and currently living in New York City. He is an ecologically-driven and experienced architect with more than 40 years of professional work, known for the Montazah project in Alexandria, Egypt and Mokkattam project in Cairo that become a model for waste management in developing countries (https://www.kickstarter.com/projects/rayking/vertical-city-a-solution-for-sustainable-living).

Among other books is ‘Vertical Cities: 12 Towers Take Urban Density to the Skies’ in which it describe the advantage of the virtually endless vertical space within urban centers, entire cities-within-cities that could spring up into the skies, packing in thousands of new housing units as well as parks, recreational space, offices, shops and everything else you’d expect to find in traditional cities. These 12 residential skyscraper designs build up instead of out, often using staggered or stepped arrangements of stacked modules to maintain air circulation, access to daylight, views and other features as well (https://weburbanist.com/2015/06/17/vertical-cities-12-towers-take-urban-density-to-the-skies/). An alternative other than creating closed class-based communities, most make their communal spaces open to the public, and reserve the ground level for greenery. Examples on vertical cities (or semi-vertical cities) include: high-rise high-density tropical living in Singapore; stacked modules in Vancouver; vertical village in Singapore by OMA; vertical city in Jakarta; Burj Khalifa in Dubai.

The Water-Climate Nexus: Greening Deserts and Cities

Greening the deserts and cities are crucial for people’s wellbeing, alleviation of poverty and mitigation of climate change. Large-scale and long-term greening of the landscape whether in deserts or urban areas is a major challenge in many parts of the world. Though the ongoing threats of climate change there are successful examples of scaling-up and scaling-out the greening of deserts and cities.

This might seem as a paradox, difficult and even impossible mission, how is it possible to green the landscape under an ongoing crisis of climate where the average temperature of the earth’s atmosphere is projected to increase more than 1.5 degrees Celsius in the near future. But it isn’t at all a paradox as such a scenario depends on the first hand on how to get the water to remain in the top surface layer of soils at the earth’s surface, i.e. to let the water to residence there for relatively longer time being bound in soil matrices and vegetations. It is a matter of getting the right balance between saving the water in soils and loosing it to the atmosphere by evaporation or the underlying soils by percolation. This is indeed the core essence of both mitigating the climate change and at the same time greening the landscape of the earth’s surface. However, this will still be possible and feasible as long as we don’t surpass the tipping points of the global water cycle that allows this equilibrium to take place on large and long-time scales. This is imperative and mandatory to mitigate the climate change in many parts of the world.

China has realized the importance to promote its ecological progress as being of vital importance to the people’s wellbeing and China’s future. Nearly 30 years ago, or more, the Kubuqi Desert in Inner Mongolia, i.e. the seventh largest desert in China, was a barren land with no water, electricity, or future. However, Elion Resources Group (ELION) has successfully afforested an area of over 6,000 square kilometers by means of technological innovation, leading to a 95 percent decrease in sand-dust weather and an increase by six times in precipitation in Kubuqi. This has also been a major step for alleviation of poverty in the region. During the process of ecosystem restoration it has been an industrial development simultaneously driven by desertification control and promotion of several government support to integrate diverse corporate commercial investments with combined market-oriented participation by farmers and herdsmen.

Sustainable developments is indeed a development with an emphasis on environmental and ecological improvements which resulted in transforming the vast areas of the Kubuqi Desert from being a “Sea of Death” to a “Green Economy Oasis” as we have it today. It is also a major shift towards a circular economy driven by sustainable and resilient circular agriculture technology for better environment and ecology with financial benefits and wellbeing to local communities and residents. The right strategies, persistent and resilient efforts allowed to successfully turn the vast expanse of dry and loose sand into wealth and prosper landscape for millions of people along with greener and healthy living environments.

After more than three decades of efforts and innovation, the process of desertification has been reversed and water returned back to land after centuries of ‘mismanaged’ animal grazing that had denuded the area of almost all vegetation and water where the local population existed in isolated poverty. Such large-scale and long-term transformation of barren sand-dunes into green oases can offer lasting solutions to desertification worldwide. Indeed, China is one of the most severely afflicted deserts in the world. By the end of the 20th century, China’s deserts were expanding at a combined annual rate of 10,400 sq km but now they are shrinking at a rate of 2,424 sq km per year. This is while the deserts and desertified landscape worldwide continue to expand by 70,000 sq km annually.

“Deserts should not be seen as a problem, but as an opportunity for change. Taking care of the desert and making it greener can lift people out of poverty, provide prosperity and help to develop areas,” says Wang Yujie, deputy director of the China National Sand Control and Desert Industry Society (http://www.china.org.cn/china/2016-10/11/content_39464603; http://europe.chinadaily.com.cn/epaper/2018-08/10/content_36739870.htm). The transformation of the Kubuqi desert to green land, changed also the life of the farmers and herdsmen from being plagued by violent sandstorms causing serious shortages of water and electricity, also resulting in poor basic living infrastructure including the lack of roads for transportation. As in many other deserts in the world the local people could hardly survive in sandy-dunes with miserable and poor living conditions where animals and cattle are forced to die from starvation and from being so thirsty in the cruel nature of the desert.

Singapore has also successfully turned their cities to green-living conditions though the complete lack of fresh-water resources as is the case in desert lands. The entire land of Singapore is transformed to sustainable, resilient and smart living environments relying primarily and totally on renewables from solar-energy and the continuous recycling of renewable water resources. China and Singapore, and to lesser extent the GCC countries, demonstrated that modern technology can turn uninhabitable landscapes to friendly and lovely living environments (https://youtu.be/P45r3vtU9lM).

Bhutan: First To Be Carbon Neutral But How and Why?

Kingdom of Bhutan – is the only single country in the world that isn’t only carbon-neutral but carbon-negative. It has replaced the generally and globally accepted concept of Gross Domestic Product ‘GDP’ by its own home-made concept Growth National Happiness ‘GNH’.

Bhutan (https://en.m.wikipedia.org/wiki/Bhutan) has moved quickly from being one of the most closed states on the planet to an open, more or less, ‘modern’ country. It has its own local traditions that are intertwined with their social and economic spheres as well as religion. It has proved to be on the correct path towards full sustainability as it has to large extent eradicated corruption. It has tightly and gradually linked their traditions and religion to achieve environmental safety, economic growth, social developments including maintaining its own cultural heritage.

There are several reasons that allowed Bhutan to move fast towards reaching the status of being, the first country on the planet, Carbon Negative nation. It has very small population, one million, living on limited piece of land with well preserved nature (https://www.alamy.com/stock-photo/bhutan-landscape.html) and biodiversity. It has implemented rules to regulate the protection of its land and to use eco-tourism to support its public services specially education and health. Modern technology arrived to Bhutan very late, by the end of the 20th century, yet it is moving slowly in the process of urbanisation with focus on own self-sufficiency of food and respect for nature. This is though being located between two major economies, i.e. China and India, with much growing technological changes. It has banned export of its natural resources and it is using hydroelectric power as main source of electricity. It has already banned the fossil-fuel to be used by its industries. Its economy is based on agriculture yet with environmentally friendly processes. It is also moving towards the use of electric vehicles. In 2030 the country will start to absorb much more (several times) carbon than it emits and it will also be free from the air-pollution.

Yes We Can – The African Great Green Wall.

Young people in Africa, with support of the African Union, and in cooperation with youth from around the world (including university students and practitioners that participated on their own initiatives) are determined to build prosperous and rewarding future. Also, to take actions to stop the climate crisis, to promote and implement the United Nations Sustainable Development Goals. While the challenges are huge and demanding, they are enormously motivated to work together. With simple but yet very effective approaches, starting with small plants, they aim to stop desertification that have been going on for millennium in the Great Sahara Desert of North Africa (https://en.m.wikipedia.org/wiki/Sahara). This part of the world is one of the most arid, hot and uninhibited regions of the world. It has the world’s highest officially recorded average daily high temperature of 47 °C or 116.6 °F in a remote desert town of Algeria called Bou Bernous at an elevation of 378 metres (1,240 ft) above sea level, and only Death Valley of California rivals it.

A report from the UN reveals that drylands, including vast areas of desert, cover 41.3% of Earth’s total land area. What if large amounts of this land could be converted into fertile ground capable of producing crops? Also using their hidden natural vast resources sustainably. This is a particularly important question for many counties in the world which is now receiving serious and huge attention because of the increasing population, declining resources and also the diverse existential threats facing Earth. As we know the Arabian Peninsula including Kuwait 🇰🇼, Oman 🇴🇲 , Qatar 🇶🇦 , Saudi Arabia 🇸🇦 , the United Arab Emirates 🇦🇪 (UAE) has turned their desert to living and prosperous landscape. So, this can be also done for some of the great desert land of the Sahara that is separating Africa in two very distinctive and separated regions. China🇨🇳also turned, and is still turning, large areas of desert to green landscape (https://lnkd.in/epYPMChX). Technology isn’t only about urbanization and smart cities. Indeed, much can be done in rural, desert, mountain and coastal marine areas as modern technologies have unlimited possible solutions. Also, the Information Communication Technology ‘ICT’ and Internet of Things ‘IoT’ can facilitate and solve much of the previous difficulties. We need to think Out-of-the-Box and tune modern technology to meet needs other than cities and heavily urbanized areas. Science and Technology need to expand their horizons to wider global applications.

For ten years young Africans have been going to the desert to plant trees in their holidays. The communities of the Sahel-Sahara States are turning many acres of the desert to new green landscape just in several days. As is called ‘The Great Green Wall’ is an African-led movement (https://youtu.be/cphSne_HiPA) with ambition to grow an 8,000km natural wonder of the world across the entire width of Africa. A decade in and roughly 15% underway, the initiative is already bringing life back to Africa’s degraded landscapes at an unprecedented scale, providing food security, jobs and a reason to stay for the millions who live along its path. This will also help coping with the climate-crisis. Indeed, North Africa has enormous resources for producing renewable solar energies, and other solar-based technologies yet to be developed, as the world is turning its back to fossil energy resources for coping with the climate crisis and other associated threats.

Indeed, the movement of The Great Green Wall ‘GGW’ has diverse benefits not only for the most poorest Africans but also for Africa, the MENA region and the rest of the world in general (https://www.greatgreenwall.org/about-great-green-wall). It will:

(1) Improving millions of lives; (2) A global symbol for humanity overcoming biggest threat of rapidly degrading environment; (3) A vital contribution to the UN Sustainable Development Goals ‘SDGs’; (4) Growing a new world wonder across the entire width of Africa; (5) Growing fertile land, one of humanity’s most precious natural assets; (6) Growing a wall of hope against abject poverty; (7) Growing food security, for the millions that go hungry every day; (8) Growing health and wellbeing for the world’s poorest communities; (9) Growing improved water security, so women and girls don’t have to spend hours everyday fetching water; (10) Growing gender equity, empowering women with new opportunities; (12) Growing sustainable energy, powering communities towards a brighter future; (13) Growing green jobs, giving real incomes to families across the Sahel; (14) Growing economic opportunities to boost small business and commercial enterprise; (15) Growing a reason to stay to help break the cycle of migration; (16) Growing sustainable consumption pattern, to protect the natural capital of the Sahel; (17) Growing resilience to climate change in a region where temperatures are rising faster than anywhere else on Earth; (18) Growing a symbol of peace in countries where conflict continues to displace communities; (19) Growing strategic partnerships to accelerate rural development across Africa; (20) Growing a symbol of interfaith harmony across Africa. These are enormous incentives for the world to support the ongoing work of the GGW, it is now we can do it as we are running out of time.

Throughout history, humans have continuously moved and expanded all over planet Earth and turned vast unhibited areas to new prosperous landscape. Yet much of the natural resources on planet earth are kept unused or abused for some reason or another. What we don’t use properly we loose definitely and this was the case of the Great Desert of North Africa, the Sahara. It is now time to invest in Africa as Africa in the past supported Europe 🇪🇺and the USA 🇺🇸 , i.e. in the era of colonialism and slavery. With the birth of the UN after WWII, Paris agreement and the ratification of the UN-SDGs by the global community we are in a grand revolution to shape the world towards a new resilient and sustainable future.

From https://www.nationalgeographic.org/article/great-green-wall/

Role of Physics, Chemistry and Science in the Golden Revolution of Sustainability.

It has never been a time in human history where all needed Goals/Targets, Knowledge, Technologies, Human Resources and Communication Tools were known, available and accessible to perform collective and global revolution that allows bringing an inclusive sustainability right in our home, Planet Earth. This said, it has never either been so critical, urgent and imperative in all human history to put all our thoughts, efforts and resources together to save Planet Earth as we have it today. Planet Earth is facing enormous existential threats because of huge pile-up of degradation in climate, environment, biodiversity and the ‘socio-economic-environment’ qualities of our life.

The journey towards ‘sustainability’ has been very long with many and continuous ups and downs. We have only understood it late and agreed on it even later. So far we have succeeded to acknowledge it and to define what sustainability is, why it is needed and how to implement and achieve it on full scale and everywhere. It is not about if we can but is rather about when and more importantly how we could be able to maintain what we so far know, put them in practical actions to build robust sustainable and resilient life. Also, with all possible means we need it to be affordable and inclusive. So, we are in the most critical part of the equation with many imperative requirements to achieve what we defined as Goals/Targets. We will expand on these issues systematically in order to connect the dots of our Ability to Sustain Life, i.e. build SustainAbility.

Goals/Targets to achieve sustainability, or to at least to achieve resilience, are already summarised in the UN-SDGs that are now ratified by all countries. It remains to have a true political well by all the member states of the United Nations and more importantly to have serious, immediate and coordinate global collective actions to promote, implement, scale-up and scale-out the UN- seventeen goals and the associated targets (https://www.un.org/sustainabledevelopment/). The date to achieve all these ambitious goals by 2030 is not likely to be met but at least we should be on the proper roads and the appropriate tracks to do so.

Technologies that are science-based and sustainability validated need to be resilient, accessible, affordable and also adaptive for use anywhere. We have a Science-Technology nexus where science promotes technology and technology promotes science and visa versa. The cycle goes on and on where science and technology become improved and refined in a continuous non-ending process as our dynamic needs never ends but rather expand and accelerate. Among several examples on the connection between science and technology to achieve sustainable solution is how we arrived at the central role of electricity in our life (https://www.mckinsey.com/business-functions/sustainability/our-insights/sustainability-blog/these-9-technological-innovations-will-shape-the-sustainability-agenda-in-2019). In this context, tight and active participation of scientific and technical communities, i.e. universities, R&D institutions and industries, are essential both from the private and public sectors. This involves all the vertical and horizontal multilayered connections specially in education and the learning process. In the past century several innovations and inventions particularly in science, technology and literature including physics, chemistry, mathematics, biology, earth sciences and medicine, engineering, agricultural and human sciences just to name some, have widened and deepened our understanding of global economy, politics and also promoted our efforts to achieve peace, security, safety and equity but the later ones. Still more and more needs to be done to counteract the degradation of life quality on Earth.

Knowledge to promote and implement these goals already exist and indeed anyone of us can consult Professor Google to seek information, to learn and to know about ‘what, where, why and how’ to participate in the ongoing sustainability revolution. Yet, we need to work together with responsibility, transparency and accountability across many knowledge domains (https://www.eolss.net/eolss-knowledge-sustainable-development.aspx) and not only in limited and narrow isolated disciplines based on fragmented and individual interests (http://www.developmentresearch.eu/?p=905). It is mandatory to increase our individual and collective participation with actions to work together (https://www.staff.lu.se/article/how-do-we-generate-knowledge-about-sustainable-development) with building teams, collecting and compiling appropriate knowledge as well as sharing our understanding and efforts by all available and accessible communication tools including the IoT ‘Internet of Things’.

Human Resources in this context are the bases to maximise our Ability to Sustain life on Earth by building resilient Human Resources (https://fardapaper.ir/mohavaha/uploads/2018/11/Fardapaper-On-the-importance-of-sustainable-human-resource-management-for-the-adoption-of-sustainable-development-goals.pdf). This has been evident through out the human history and during all the past transitions from the hunter-gatherer era to the agriculture revolution and all the way through the various stages of the industrial revolutions up to the post information revolution. We have now a collective human library that describes the collective human intelligence, not necessarily the human intellect. That is more or less accessible and affordable ‘Google’ to use and guide us for a better and prosperous future specially what regards the management of human resources (https://onlinelibrary.wiley.com/doi/full/10.1002/sd.2166). However, Google in itself just gives access to more or less all the known knowledge in the form of a ‘Black Box’ of ‘raw knowledge’. This access to knowledge needs to be sorted, refined and tuned for correct and proper use, also to improve through R&D for the sake of improving the global human resource capital. For developing critical skills for example Google has training and performance management programmes for human resources (http://panmore.com/google-hrm-training-performance-management). In this context, there must be a threshold of knowledge to get maximum benefit from Google which we can get through education and/or training, also through experiments and interships. By the end of the day, education and R&D are main vehicles for creating sustainable human resources empowered by the necessary knowledge.

Communication Tools are becoming increasingly available and affordable through ICT technologies ‘Information Communication Technologies’ that give us access to multiple services, businesses, education, trade, health and entertainment and are continuously shaping our daily life including for examples the diverse flora of social-media tools and instruments, e.g. Facebook, Instagram, Pinterest, YouTube, WhatsApp, Google Duo, private and public TV programs and….. many others. ICTs can help accelerate progress towards every single one of the 17 UN-SDGs. For example, helping to build resilient infrastructure, promoting inclusive and sustainable industrialization and fostering innovation and services that allow countries to participate in digital economy and to increase their well-being and competitiveness (https://news.itu.int/icts-united-nations-sustainable-development-goals/#). These tools and the IoT ‘Internet of Things’ in general allowed to boost various types of human-to-human, human-to-machine and machine-to-machine interactions and eventually evolved more and more to sophisticated automation, ML ‘machine-learning’ and AI ‘Artificial Intelligence’ technologies. ICTs are already empowering billions of individuals around the world by improving the access to education and healthcare, and many other services such as mobile banking, e-government and social media, among others. However, there are still considerable needs to promote/improve the global interconnectness because of its great potential to accelerate human progress, to bridge the digital divide and to develop knowledge societies, as does scientific and technological innovation across e.g. areas as diverse as medicine and energy (https://sustainabledevelopment.un.org/index.php?page=view&type=20000&nr=579&menu=2993)

The desire to build sustainable societies is not new and it has always existed but we didn’t have access to enough knowledge, instruments and resources. These are among essential requirements that were highly lacking in integrated and coordinated manner throughout the human history. This has indeed caused serious confusion about what life on Earth is and how we can work collectively to have wealthy and healthy life on Earth. However, we give here two major examples from chemistry and physics that were indispensable for connecting science and technology on the one hand and for putting them for the service of society on the other. These two examples show that developing robust sustainable and resilient technologies do need solving, compiling and coordinating complex web of known and unknown details through huge and diverse machinery of R&D. Also, to recognize the enormous needs for at least interdisciplinary, multi-disciplinary work, if not full transdisciplinary interactions within and between, for example, physics and chemistry on the one hand, and all other scientific disciplines on the other hand. The feedbacks from physics and chemistry as well as from other sciences, e.g. earth, environment, life and human sciences, helped the evolution of sustainable science and technology specially in terms of understanding the life conditions and boundaries on earth and also to provide better services for humanity.

This said, to see the evolution in physics and chemistry in terms of sustainable developments we will put them in historical perspective what regards the addressed issues. In chemistry the periodic table of elements will be explained by life demonstrations (https://youtu.be/kqe9tEcZkno). This is to increase the added value of pedagogy in education. Indeed, all elements of the periodic table have find their way in our daily life in away or another that made our life easier but also created multiple threats through the increasing waste and pollution. We should keep in mind that we need to consider the Life Cycle ‘LC’ of all the elements from cardle to grave (https://thebusinessprofessor.com/en_US/mgmt-operations/cradle-to-grave-definition). It is not only about processing, producing, using and consuming the elements of the periodic table but it is also about what are the consequences and impacts of the waste and pollution associated with all the elements, and their compounds, in the main spheres of the earth’s system (atmosphere, hydrosphere, lithosphere, biosphere and cryosphere. Many advances in chemistry and physics and other sciences were made possible through our understanding of the chemistry and physics (also in other sciences) of the all the elements of the periodic table, and their derivative minerals and compounds that resulted from natural processes in the Earth’s system, including reactions and interactions both under laboratory conditions and more importantly in the Earth’s system.

What concerns physics we will give a historical perspective of what electricity is and how electrons as moving charges carrying energies can produce also electromagnetic interactions and waves that carry information as well. The property of electrons to interact with energy, i.e. absorb energy, carry energy and emit energy, transform and transport energy as well as get annihilated and disappear all together have found enormous uses and applications, e.g. to produce and transport electricity to be used, stored and also to transmit, mediate and communicate information. Electrons are ‘energy and information’ messengers and you can imagine what we have and can be achieved by understanding these mysterious particles that we still learn more and more about them. Indeed, electrons are the very bases of our today’s and tomorrow’s modern reality (https://youtu.be/Gtp51eZkwoI) every-day life and services.

In this context, chemistry and physics as well as mathematics have jointly allowed, to major extent, understanding the details and very secrets of the electronic structures of all the elements of the periodic table. Thereby contributed in building up an enormous and indispensable database of knowledge and models that allowed to convert light to electricity ‘solar panels’ and to store electricity in well designed, safe, efficient and effective batteries (also with help of ICT), as is the case of Lithium-Ion Batteries ‘LIB’. Yet, more is expected to come. Also, they allowed us to enjoy all modern ICTs tools such as computers, cell phones, tablets, ….. and an enormous flora of sensors and actuators that are now being used in automation and robots. These have opened many gates for shaping new industrial revolutions, i.e. AI ‘Artificial Intelligence’ and ML ‘Machine Learning’. Not to mention the household machines and tools as well as the technical needs of our industries are all an outcome of the magic services of electrons.

Enjoy the two well-selected videos that illustrate the science behind the chemistry of the periodic table and the physics of electricity.

The growing awareness of accelerated use (mining, processing and production) of several elements of the periodic table and the associated threats from pollution/waste and the risks to run out of reserves of critical elements promoted more integration of sciences. The concept of Life Cycle Analyses ‘LCA’, the rise of Circular Economy ‘CE’ and the needs to integrate Environment Social Governance in global businesses are some examples of the necessity to consider transdisciplinary approaches to integrate sciences for promoting and achieving the UN-SDGs.

Source Cheri Koones, Forbes.com “creating-energy-independence-with-solar-panels–storage-battery-systems-in-the-home”

🛑 Fridays for Future – Global Climate Demonstrations.

Employees at Uppsala University UU, and the Swedish University of Agricultural Sciences SLU, joining the Global Climate Demonstration today Friday 24 September at Forumtorget in Uppsala around 15.30.

This is to show the leadership of UU and SLU their concern about the climate crisis, and to demand immediate action against the climate change. Universities need to show in practical terms and measures that they takes science seriously NOW, and they need to lead not only by examples but by actions as well.

https://stayhappening.com/e/global-klimatstrejk-uprootthesystem-E2ISTVWDWE0

Would Liquid Metal Batteries Revolutionize Energy Storage?

Energy is one of the three main drivers, i.e. water, energy and natural resources, of all life forms on Earth. The sustainability of these three main drivers is a pre-request for our survival and more importantly for the survival of all forms of life on Earth (https://youtu.be/f6kwNNdOVr4), and more importantly for prosperity and improved life-quality. Unlike the other two drivers, energy conservation is of much more importance not only to satisfy our daily needs but on the first hand to cope with the many direct and indirect existential threats facing life. Also, how much energy we are consuming determines how much natural resources, including water, we would need for our activities. Energy in all its forms, either as stationary fossil or dynamic renewable resources, has complex interwoven challenges as it is strongly coupled to the social, environment and economic pillars of our modern lifestyle. Also, all energy production, distribution and uses are more or less, associated with different degrees and levels of negative impacts. Progress in energy conservation and renewable energy sources is determinant for the ongoing sustainability revolution not only to a climate-compatible circular economy, but also essential for achieving sustainable and resilient societies (UN-SDGs). We therefore need to be less dependent on fossil-fuel based-energy and to scale-up and scale-out clean and sustainable energy resources on the global scale. Renewables without appropriate affordable storage is not sustainable, we need also to have different sustainable and resilient storage alternatives for solar and wind energy solutions that can meet the different environment, weather and climate conditions. For example, limitations do exist in hot regions as in the MENA region and other parts in the world where the Li-ion batteries may not be the best choice. Also, manufacturing and production facilities need to be available where the natural raw materials for production are abundant. So, what regards batteries, one-size-fits-all option is unlikely to be sustainable and resilient under all conditions.

Moving away from fossil-fuel (coal, oil and gas) to renewable energy resources isn’t an overnight process as it is associated with many complex challenges specially what regards the huge needs of electricity generation, use and consumption, i.e. production and supply (https://youtu.be/eRz46AwPcSc). Solar and wind are becoming increasingly crucial for scaling- up and scaling-out the renewable energy resources. However, the very nature of these renewables by being intermittent sources and the fact that there is a wide-range of dynamic and variable needs by the stakeholders around the world in terms of intensity of energy needed in different applications.

One important aspect in the scaling-up and scaling-out the use of the renewable energy resources of solar and wind energy is battery-storage. Li-ion batteries, though are currently one of the best storage facilities, they still have several limitations to fulfill full scale applications that are required by the markets’ needs. Lithium-ion batteries are not necessarily the only ‘one-size-fits-all’ solution for the energy storage of renewable solar and wind energies. They prone to fire and require extensive non-renewable resource extraction from the earth which may not be sustainable in the longer run because of the side-effects associated with their production and processing as well as the complete LC ‘life-cycle’ of the batteries, i.e. effective recovery of the raw materials.

An alternative new technology for energy storage is emerging in the world market. The US-based Ambri is now one of the so-far leading alternatives in energy storage and it aims to lower electricity costs, enable easy access and widespread usage of renewable energy systems, among other things. It is doing this by working on alternatives to lithium-ion technology such as liquid metal batteries and antimony electrode-based cells that are more resilient, long-lasting and eco-friendly (https://youtu.be/NiRrvxjrJ1U; https://www.google.se/amp/s/www.moneycontrol.com/news/business/ril-rnsel-mukesh-ambani-ambri-renewable-energy-storage-7314091.html/amp). This liquid metal battery is an innovation in stationary electricity storage invented by Prof. Donald Sadoway, MIT, USA. At present Ambri can cater to projects that require energy storage systems from 10 MWh to 2 GWh. Energy-intensive industries need to reach climate neutrality by 2050. Various technologies are available for the decarbonisation of the iron and steel, chemicals, refining and cement industries as well as the existing financial instruments (https://www.europarl.europa.eu/RegData/etudes/STUD/2020/652717/IPOL_STU(2020)652717_EN.pdf). However, suitable energy storage technologies are still needed to help shape and enhance the transition to a climate neutral industries, specially the energy-intensive ones, not only in Europe but around the world.

Energy storage is vital not just for the business of mobility but for reducing the overall cost of electricity and, more importantly, mitigating climate change. It plays an integral role in the development and integration of renewable energy technologies—a technological space that is seeing rapid development. Energy storage is an indispensable bridge between intermittent renewable power and a constant, glitch-free supply of electric energy. Achieving sustainable and resilient societies would require having diverse and customized solutions to meet an increasing need of off-grid and decentralized energy-options, e.g. in rural and remote areas for household (https://youtu.be/yxABosWfuus) and also for energy-intensive industries (https://youtu.be/m8751tkBU_Q; https://youtu.be/m8751tkBU_Q; https://www.energy-storage.news/ambris-liquid-metal-battery-to-be-used-at-desert-data-centre-in-nevada/). As this will unload overpopulated urban areas and cities. The needs of such options are timely because of the huge flexibility that is offered by ICT ‘Information Communication Technology’ and AI ‘Artificial Intelligence’ that allow not being totally dependent on urban areas and cities. Agriculture and rural areas are still essential for our living and they are the underlying platform for supporting urban areas and cities.

It is still interesting to see how this new approach of liquid metal batteries for storage of renewable energies from solar and wind will continue their long-term progress (https://www.google.se/amp/s/www.forbes.com/sites/davidblackmon/2021/09/02/bill-gates-backed-startup-might-change-the-renewable-energy-storage-game/amp/).

Ambri a new addition to battery technology.

Political Correctness and Academic Stewardship: Management and (Skewed) Control in Swedish Universities.

Before introducing the lecture and presenting a previous related debate about the situation in Sweden regarding politics versus quality in higher education. We need to keep in mind that multi-layered paradoxes and controversies do exist around the world, but in different degrees, what regards the political correctness, political power and related needs in the society including quality of education, science and R&D. These are import and crucial as education, science and R&D are essential driver for the appropriate development and advance of societies and humanity in general. What do we expect without them?

Let us for example see the relation between science and politics as debated in one of the most reputed scientific journal ‘Nature’ in the article ‘Stick to the science’: when science gets political (https://www.nature.com/articles/d41586-020-03067-w). It has three parts: history of science and politics; politics of the life scientific; and talking politics and talking science. Science is objective and evidence-based while politics is more about power, economy and balancing the needs of the society as emanated from the voters. The drivers of, and support for, science and politics are very much different but through out history there have been always mutual needs. More recently politics shifted more and more towards the society much more than science, e.g. equity and over many other issues defined by the UN-SDGs. There are also other facts need to be taken in consideration politics is much more short-sighted, in some sense, as compared to education, science and R&D. This is why politics shifts and swings relatively faster than education, science and R&D. In reality, funding of research councils and other funding organisations are based on political and economic decisions and when money and people are involved then science become impacted or even turbulent. Science never acted in vacuum and it has been always mutual interactions. This doesn’t necessarily need to mean that objectivity in science and higher education becomes cloudy and looses its main pillars of being evidence-based. Indeed, what regards science and politics, when science becomes only captured by normal politics, its value declines and drains away (https://www.science.org/doi/full/10.1126/science.aaz7996). That is the case in many places around the world even in modern times where science is poorly needed to solve our existential wicked and complex threats as summarized in the UN-SDGs. Apart from politics there are other actors that can influence the outcome of education, science and R&D including culture, religion, believes and social fabrics.

Now, to the subject of this post, i.e. the Institutional Colloquium hosted by IFA, Uppsala University with the lecture of Prof. Mats Alvesson (Lund University) – Title: Management and (skewed) control in universities and colleges. Text in English is about the same subject and was previously published as an article in Swedish Newspapers (ppl).

The Colloquium will take place on Tuesday the 14th of September on 11:15 AM at Ångströmlab. Institute of Physics and Astronomy, Uppsala Univesity, sal 2005. It can be also followed online at Zoom-link: https://uu-se.zoom.us/s/67413387328

The Lecturer. Mats Alvesson (website https://portal.research.lu.se/portal/sv/persons/mats-alvesson(071de634-ce8c-4f05-ac7d-0e1d06f2b381).html) is a professor at Lund University and also Univ. of Queensland, Australia, and City Univ., London. A Wallenberg scholar and one of Europe’s most quoted social scientists. His research area includes organizational culture, leadership and identity within organizations as well as a qualitative social science method. He has been particularly interested in functional stupidity. The concept was launched (together with André Spicer) in 2012 and is officially used in Sweden. Mats Alvesson is a diligent debater and author.

Institutionskollokvium: ‘Ledning och (sned-) styrning i universitet och högskolor’. Sammanfattning. Universitetets huvuduppgifter bör vara att bedriva god utbildning och forskning. Men dessa mål styr endast och i mindre utsträckning verksamheten. Andra funktioner och intressen tar överhanden: studentnöjdhet (vid kursutvärderingstillfällen), hög genomströmning, lärarnas karriärsoptimering, få allt att se bra ut, göra formellt rätt, imitera andra organisationer, expansion av administration mm. Ofta blir utbildningar kravlösa och ribban läggs lågt. Mycket forskning är av tveksamt värde och relevans. Föreläsningen tar upp problem i dagens universitet och högskola och pekar på lösningar.

The Colloquium/lecture in English: ‘Management and (skewed) control in Swedish universities and high schools’. Summary. The university’s main tasks should be to conduct good education and research. But these goals only and to a lesser extent govern the business. Other functions and interests take precedence: student satisfaction (at course evaluation opportunities), high throughput, teachers’ career optimization, making everything look good, doing formally right, imitating other organizations, expansion of administration etc. Educations often become unpretentious and the bar is set low. Much research is of dubious value and relevance. The lecture addresses problems in today’s universities and colleges and points to solutions.

The talk will include issues that was previously published in a Swedish Newspaper (https://www.gp.se/debatt/politisk-korrekthet-viktigare-än-kvalitetskrav-på-universiteten-1.38029174), here is the English translation:

Political correctness is more important than quality requirements at universities.
Debate. The universities will function as independent institutions that will be responsible for independent research and education on a scientific basis. As it looks today, however, the university’s management is increasingly acting under the influence of trends in the public debate and adapted education according to what is considered to be the right opinion in comparison with the wishes of the government, rather than creating a high quality business, write Mats Alvesson and Erik J Olsson Lund University. At the turn of the year, several heavy universities change rectors; for example Lund and Uppsala. In Linköping, a new principal has already taken office. Universities are primarily intended to be independent institutions that will be responsible for independent research and education on a scientific basis. However, this is in a state of tension, partly due to the view of universities as authorities, and partly to an increasingly widespread pressure to adapt to different opinions and different perspectives. Universities and colleges are authorities, which to a certain extent is reasonable, but the activity is undermined if government thinking is allowed to dominate, which leads to everything first and foremost being formally correct and characterized by loyalty to the wishes of political power. The focus will be on formalities rather than a good business.

The fact that universities are treated like other authorities is an expression of thoughtlessness. It will be easiest then. It will also be easiest for university managements who emphasize the government perspective more than the universities’ deeper assignments.

University managements often fail to safeguard the universities’ basic idea, which takes on different expressions. Here are some:

(1) Inappropriate recruitment and promotions. In many places, the principle of meritocratic recruitment has been abandoned and the employment of people who are in the heat has been accepted. Rather than professorships being announced and appointed in competition, resources have been used for internal promotion, with lower requirements and competence as a result.

(2) Gender quotas. Everyone is, of course, for equal opportunities regardless of gender. This is a difficult issue that may require investigation of obstacles and their remedies. In many places, however, gender equality has been interpreted as equal outcomes that are easier to measure and tick off. Counting the gender of course literature writers does not benefit the quality of education. There is a marked over-recruitment of women as professors, in relation to actual merit. Karolinska Institutet is an example.

(3) Improper influence. Engaging in politically sensitive research has its risks, as illustrated not least by a current case in Linköping. The researchers, who questioned the Crime Prevention Council’s political independence, were subjected to administrative abuse and a miserable work environment at the university. A student at the University of Agriculture who in a debate post criticized the animal husbandry of the business community was called to the university management to explain himself.

(4) Culture of insult. In Uppsala, a teacher’s statement of the n-word in a course in archive search caused great uproar. A student at KTH who produced statistics on immigration and crime was called to the director of studies and HR manager. The statistics were in themselves considered offensive. Lund has had several incidents where a few students felt offended by the teaching, which led to the courses being changed.

(5) Low demands on students. In many educations, the requirements are so low that full-time in reality means half-time or less. Most university and college managements seem to take a let-go attitude to this. Many who graduate are unqualified. 6. Opportunism. Sense of trends and need to be seen is strong. Sometimes honorary doctorates are used to get PR. Luleå University of Technology, for example, has recently appointed Charlotte Kalla an honorary doctor.

Of course, university managements cannot be blamed for all this, but they bear co-responsibility for the universities’ increasingly weak academic orientation and weak results – by following the current, doing what is easiest and minimizing risk. In terms of level of education, for example, the principals contributed to a reduction by pushing for the replacement of external review of degree projects with internal quality bureaucracy. Principals should primarily be university advocates and not government officials. It is more important to present the university’s mission, than to show sensitivity to politics, current opinions or uncritically follow dysfunctional regulations. It is important to safeguard what should be the point of universities and colleges: to primarily create high-quality research and education. It is not to demand too much that university managements here take their responsibility.

By Mats Alvesson, Professor of Business Administration at Lund University. Erik J Olsson, Professor of Theoretical Philosophy at Lund University, Chairman of the Academic Rights Watch Foundation

Political correctness is more important than quality requirements at universities